Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 658719

Canonical Polyadic Decomposition For Unsupervised Linear Feature Extraction From Protein Profiles


Jukić, Ante; Kopriva, Ivica, Cichocki, Andrzej
Canonical Polyadic Decomposition For Unsupervised Linear Feature Extraction From Protein Profiles // Proceedings of the 21th European Signal Processing Conference (EUSIPCO 2013)
Marakeš, Maroko, 2013. (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 658719 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Canonical Polyadic Decomposition For Unsupervised Linear Feature Extraction From Protein Profiles

Autori
Jukić, Ante ; Kopriva, Ivica, Cichocki, Andrzej

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 21th European Signal Processing Conference (EUSIPCO 2013) / - , 2013

Skup
21th European Signal Processing Conference (EUSIPCO 2013)

Mjesto i datum
Marakeš, Maroko, 09.09.2013. - 13.09.2013

Vrsta sudjelovanja
Poster

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
feature extraction; tensor decomposition; cancer prediction

Sažetak
We propose a method for unsupervised linear feature extraction through tensor decomposition. The linear feature extraction can be formulated as a canonical polyadic decomposition (CPD) of a third-order tensor when transformation matrix is constrained to be equal to the Khatri-Rao product of two matrices. Therefore, standard algorithms for computing CPD decomposition can be used for feature extraction. The proposed method is validated on publicly available low-resolution mass spectra of cancerous and non-cancerous samples. Obtained results indicate that this approach could be of practical importance in analysis of protein expression profiles.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
098-0982903-2558 - Analiza višespektralih podataka (Kopriva, Ivica, MZOS ) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Ante Jukić (autor)

Avatar Url Ivica Kopriva (autor)

Citiraj ovu publikaciju:

Jukić, Ante; Kopriva, Ivica, Cichocki, Andrzej
Canonical Polyadic Decomposition For Unsupervised Linear Feature Extraction From Protein Profiles // Proceedings of the 21th European Signal Processing Conference (EUSIPCO 2013)
Marakeš, Maroko, 2013. (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Jukić, A. & Kopriva, Ivica, Cichocki, Andrzej (2013) Canonical Polyadic Decomposition For Unsupervised Linear Feature Extraction From Protein Profiles. U: Proceedings of the 21th European Signal Processing Conference (EUSIPCO 2013).
@article{article, author = {Juki\'{c}, Ante}, year = {2013}, keywords = {feature extraction, tensor decomposition, cancer prediction}, title = {Canonical Polyadic Decomposition For Unsupervised Linear Feature Extraction From Protein Profiles}, keyword = {feature extraction, tensor decomposition, cancer prediction}, publisherplace = {Marake\v{s}, Maroko} }
@article{article, author = {Juki\'{c}, Ante}, year = {2013}, keywords = {feature extraction, tensor decomposition, cancer prediction}, title = {Canonical Polyadic Decomposition For Unsupervised Linear Feature Extraction From Protein Profiles}, keyword = {feature extraction, tensor decomposition, cancer prediction}, publisherplace = {Marake\v{s}, Maroko} }




Contrast
Increase Font
Decrease Font
Dyslexic Font