Pregled bibliografske jedinice broj: 656745
Microbial mechanisms coupling carbon and phosphorus cycles in phosphorus-limited northern Adriatic Sea
Microbial mechanisms coupling carbon and phosphorus cycles in phosphorus-limited northern Adriatic Sea // Science of the total environment, 470/471 (2014), 1173-1183 doi:10.1016/j.scitotenv.2013.10.040 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 656745 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Microbial mechanisms coupling carbon and phosphorus cycles in phosphorus-limited northern Adriatic Sea
Autori
Malfatti, F. ; Turk, V. ; Tinta T. ; Mozetič P. ; Manganelli, M. ; Samoa, T.J. ; Ugalde, J.A. ; Kovač, N. ; Stefanelli, M. ; Antonioli, M. ; Fonda-Umani, S. ; Del Negro, P. ; Cataletto, B. ; Hozić, Amela ; Ivošević DeNardis, Nadica ; Žutić, Vera ; Svetličić, Vesna ; Mišić Radić, Tea ; Radić, Tomislav ; Fuks, Dragica ; Azam F.
Izvornik
Science of the total environment (0048-9697) 470/471
(2014);
1173-1183
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
marine carbon biogeochemistry; bacterial alkaline phosphatase; ELF-enzyme; hydrolyses; DOC accumulation; laser scanning confocal microscope
Sažetak
The coastal northern Adriatic Sea receives pulsed inputs of riverine nutrients, causing phytoplankton blooms and seasonally sustained dissolved organic carbon (DOC) accumulation— hypothesized to cause episodes ofmassivemucilage. The underlying mechanisms regulating P and C cycles and their coupling are unclear. Extensive biogeochemical parameters, processes and community composition were measured in a 64-daymesocosms deployed off Piran, Slovenia.We followed the temporal trends of C and P fluxes in P-enriched (P+) and unenriched (P−)mesocosms. An intense diatom bloom developed then crashed ; however, substantial primary production was maintained throughout, supported by tightly coupled P regeneration by bacteria and phytoplankton. Results provide novel insights on post-bloom C and P dynamics and mechanisms. 1) Post-bloom DOC accumulation to 186 μM remained elevated despite high bacterial carbon demand. Presumably, a large part of DOC accumulated due to the bacterial ectohydrolytic processing of primary productivity that adventitiously generated slow-to-degrade DOC ; 2) bacteria heavily colonized post-bloom diatom aggregates, rendering them microscale hotspots of P regeneration due to locally intense bacterial ectohydrolase activities ; 3) Pi turnover was rapid thus suggesting high P flux through the DOP pool (dissolved organic phosphorus) turnover ; 4) Alpha- and Gamma-proteobacteria dominated the bacterial communities despite great differences of C and P pools and fluxes in both mesocosms. However, minor taxa showed dramatic changes in community compositions.Major OTUs were presumably generalists adapted to diverse productivity regimes.We suggest that variation in bacterial ectohydrolase activities on aggregates, regulating the rates of POM→DOM transition as well as dissolved polymer hydrolysis, could become a bottleneck in P regeneration. This could be another regulatory step, in addition to APase, in the microbial regulation of P cycle and the coupling between C and P cycles.
Izvorni jezik
Engleski
Znanstvena područja
Geologija, Kemija
POVEZANOST RADA
Projekti:
098-0982934-2744 - Površinske sile na atomskoj skali u istraživanju mora i nanotehnologiji (Svetličić, Vesna, MZOS ) ( CroRIS)
Ustanove:
Institut za jadranske kulture i melioraciju krša, Split,
Institut "Ruđer Bošković", Zagreb
Profili:
Amela Hozić
(autor)
Vesna Svetličić
(autor)
Tea Mišić Radić
(autor)
Vera Žutić
(autor)
Nadica Ivošević DeNardis
(autor)
Vladimir Mozetič
(autor)
Dragica Fuks
(autor)
Tomislav Radić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE