Pregled bibliografske jedinice broj: 654689
Classifying Traffic Scenes Using The GIST Image Descriptor
Classifying Traffic Scenes Using The GIST Image Descriptor // CCVW 2013 Proceedings of the Croatian Computer Vision Workshop / Lončarić, Sven ; Šegvić, Siniša (ur.).
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2013. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 654689 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Classifying Traffic Scenes Using The GIST Image Descriptor
Autori
Sikirić, Ivan ; Brkić, Karla ; Šegvić, Siniša
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
CCVW 2013 Proceedings of the Croatian Computer Vision Workshop
/ Lončarić, Sven ; Šegvić, Siniša - Zagreb : Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2013, 1-6
Skup
Croatian Computer Vision Workshop
Mjesto i datum
Zagreb, Hrvatska, 19.09.2013
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
computer vision
Sažetak
This paper proposes combining spatio-temporal ap- pearance (STA) descriptors with optical flow for human action recognition. The STA descriptors are local histogram-based descriptors of space-time, suitable for building a partial rep- resentation of arbitrary spatio-temporal phenomena. Because of the possibility of iterative refinement, they are interesting in the context of online human action recognition. We investigate the use of dense optical flow as the image function of the STA descriptor for human action recognition, using two different algorithms for computing the flow: the Farnebäck algorithm and the TV- L1 algorithm. We provide a detailed analysis of the influencing optical flow algorithm parameters on the produced optical flow fields. An extensive experimental validation of optical flow-based STA descriptors in human action recognition is performed on the KTH human action dataset. The encouraging experimental results suggest the potential of our approach in online human action recognition.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
036-0361935-1954 - Teorija, modeliranje i uporaba autonomno orijentiranih računarskih struktura (Ribarić, Slobodan, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb