Pregled bibliografske jedinice broj: 642707
Homogenisation theory for Friedrichs systems
Homogenisation theory for Friedrichs systems // Communications on pure and applied analysis, 13 (2014), 3; 1017-1044 doi:10.3934/cpaa.2014.13.1017 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 642707 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Homogenisation theory for Friedrichs systems
Autori
Burazin, Krešimir ; Vrdoljak, Marko
Izvornik
Communications on pure and applied analysis (1534-0392) 13
(2014), 3;
1017-1044
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
homogenisation ; symmetric positive systems ; H-convergence ; G-convergence ; com- pensated compactness
Sažetak
We develop a general homogenisation procedure for Friedrichs systems. Under reasonable assumptions, the concepts of G and H-convergence are introduced. As Friedrichs systems can be used to represent various boundary or initial-boundary value problems for partial differential equations, some additional assumptions are needed for compactness results. These assumptions are particularly examined for the stationary diffusion equation, the heat equation and a model example of a first order equation leading to memory effects. In the first two cases, the equivalence with the original notion of H-convergence is proved.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZOS-037-0372787-2795 - Titrajuća rješenja parcijalnih diferencijalnih jednadžbi (Antonić, Nenad, MZOS ) ( CroRIS)
MZOS-037-1193086-3226 - Matematičko modeliranje geofizičkih pojava (Vrdoljak, Marko, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb,
Sveučilište u Osijeku, Odjel za matematiku
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- INSPEC
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts