Pregled bibliografske jedinice broj: 640499
Parallel levenberg-marquardt-based neural network with variable decay rate
Parallel levenberg-marquardt-based neural network with variable decay rate // CIM 2013 : Computer integrated manufacturing and high speed machining / Abele, Eberhard ; Udiljak, Toma ; Ciglar, Damir (ur.).
Zagreb: Hrvatska udruga proizvodnog strojarstva (HUPS), 2013. str. 59-64 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 640499 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Parallel levenberg-marquardt-based neural network with variable decay rate
Autori
Baček, Tomislav ; Majetić, Dubravko ; Brezak, Danko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
CIM 2013 : Computer integrated manufacturing and high speed machining
/ Abele, Eberhard ; Udiljak, Toma ; Ciglar, Damir - Zagreb : Hrvatska udruga proizvodnog strojarstva (HUPS), 2013, 59-64
ISBN
978-953-7689-02-5
Skup
14th International Scientific Conference on Production Engineering
Mjesto i datum
Biograd na Moru, Hrvatska, 19.06.2013. - 22.06.2013
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
neural networks; regression; parallel levenberg-marquardt algorithm
Sažetak
In this paper, parallel Levenberg-Marquardt-based feed-forward neural network with variable weight decay, implemented on the Graphics Proce-ssing Unit, is suggested. Two levels of parallelism are implemented in the algorithm. One level of parallelism is achieved across the data set, due to inherently parallel structure of the feed-forward neural networks. Another level of parallelism is achieved in Jacobian computation. To avoid third level of parallelism, i.e. parallelization of optimi-zation search steps, and to keep the algorithm simple, variable decay rate is used. Parameters of variable decay rate rule allow for compromise between oscillations and higher accuracy on one side and stable but slower convergence on the other side. To improve training speed and efficiency modification of random weight initializa-tion is included. Testing of a parallel algorithm is performed on two real domain benchmark problems. Results, given in a form of a table with obtained speedups, show the effectiveness of proposed algorithm implementation.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
120-1201842-3048 - Umjetna inteligencija u upravljanju složenim nelinearnim dinamičkim sustavima (Kasać, Josip) ( CroRIS)
120-1201948-1945 - Inteligentno vođenje obradnih sustava (Majetić, Dubravko, MZOS ) ( CroRIS)
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb