Pregled bibliografske jedinice broj: 639619
A transience condition for a class of one-dimensional symmetric Lévy processes
A transience condition for a class of one-dimensional symmetric Lévy processes // Electronic communications in probability, 18 (2013), 71-1 doi:10.1214/ECP.v18-2802 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 639619 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A transience condition for a class of one-dimensional symmetric Lévy processes
Autori
Sandrić, Nikola
Izvornik
Electronic communications in probability (1083-589X) 18
(2013);
71-1
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
characteristics of a semimartingale; electrical network; Lévy measure; Lévy process; random walk; recurrence; transience
Sažetak
In this paper, we give a sufficient condition for the transience for a class of one-dimensional symmetric L\'evy processes. More precisely, we prove that a one-dimensional symmetric L\'evy process with the L\'evy measure $\nu(dy)=f(y)dy$ or $\nu(\{; ; n\}; ; )=p_n$, where the density function $f(y)$ is such that $f(y)>0$ a.e. and the sequence $\{; ; p_n\}; ; _{; ; n\geq1}; ; $ is such that $p_n>0$ for all $n\geq1$, is transient if $$\int_1^{; ; \infty}; ; \frac{; ; dy}; ; {; ; y^{; ; 3}; ; f(y)}; ; <\infty\quad\textrm{; ; or}; ; \quad \sum_{; ; n=1}; ; ^{; ; \infty}; ; \frac{; ; 1}; ; {; ; n^{; ; 3}; ; p_n}; ; <\infty.$$ Similarly, we derive an analogous transience condition for one-dimensional symmetric random walks with continuous and discrete jumps.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet