Pregled bibliografske jedinice broj: 635356
On the convergence of the Jacobi methods under certain periodic pivot strategies
On the convergence of the Jacobi methods under certain periodic pivot strategies // Applied Mathematics and Scientific Computing
Šibenik, Hrvatska, 2013. str. 17-18 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 635356 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the convergence of the Jacobi methods under certain periodic pivot strategies
Autori
Begović, Erna ; Hari, Vjeran
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Applied Mathematics and Scientific Computing
/ - , 2013, 17-18
Skup
Conference on Applied Mathematics and Scientific Computing
Mjesto i datum
Šibenik, Hrvatska, 10.06.2013. - 14.06.2013
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Jacobi methods ; pivot strategies ; convergence
Sažetak
Jacobi method for computing the eigensystem of a symmetric matrix A is the iterative process of the form A^(k+1)=U_k*A^(k)U_k, k>=0, A^(0)=A, where U_k, k>=0, are orthogonal matrices generated by the method. It is known that this process converges under some classes of cyclic pivot strategies and among them the class of weakly wavefront strategies is best known and understood. We consider several new classes of periodic pivot strategies. They include certain cyclic and quasi–cyclic strategies. The convergence proofs use different tools and one of them is the theory of Jacobi operators introduced by Henrici and Zimmermann. The new strategies can also be used with block Jacobi methods, but then a new tool, the theory of block Jacobi operators, is used. The obtained results and the new tools can be used for proving convergence of standard and block Jacobi–type methods for solving other eigenvalue and singular value problems.
Izvorni jezik
Engleski
Znanstvena područja
Matematika