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a b s t r a c t

Several supervised feature extraction methods for tensor objects have been proposed recently, with
applications in recognition of objects, faces and handwritten digits. However, the existing methods
usually use only second order statistics of the data, typically through calculation of the within- and
between-class scatters. Here we propose a method for supervised feature extraction for tensor objects
based on maximization of an approximation of mutual information. In this way we utilize information
contained in the higher order statistics of the data. Several experiments show that the proposed method
results in highly discriminative features.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Methods for dimensionality reduction are very important in the
field of machine learning and pattern recognition. Preprocessing
high-dimensional data by a suitable dimensionality reduction pro-
cedure leads to a reduced computational cost in further processing,
and often better generalization and easier interpretation of a smal-
ler number of features. Dimensionality reduction can be performed
by building a small set of new features through linear or nonlinear
transformation of the original data, i.e., by performing a linear or
nonlinear feature extraction (FE). Classical algorithm for unsuper-
vised linear FE is principal component analysis (PCA), while typical
supervised linear FE method is linear discriminant analysis (LDA).
In both supervised and unsupervised scenario, the aim is to find
a low-dimensional subspace that keeps all information about the
original data, usually through optimization of some criterion. How-
ever, the difference is that the supervised methods use additional
information provided in labels of the training samples, while unsu-
pervised methods do not use such information. In classification
problems we are interested in features that provide as much infor-
mation as possible for class discrimination. Therefore, some kind of

proxy for class discrimination should be used as an optimization
criterion when seeking for optimal transformation of the features.
Classical techniques based on discriminant analysis, such as LDA
and its variants, are based on maximization of distance between
classes and rely only on the first and second order statistics of
the data. However, recent methods address the linear FE
problem using information theoretic criteria and achieve superior
results (Torkkola, 2003; Leiva-Murillo and Artès-Rodrìgues, 2007;
Kamandar and Ghassemian, 2013).

In modern applications, such as neuroscience, chemometrics,
text mining, image and video analysis, data is often represented
by multi-way arrays, i.e., tensors (Cichocki et al., 2009). However,
most of the methods for FE treat input samples as vectors, and thus
ignore their natural multi-way structure. Additionally, vectoriza-
tion of tensors results in vector samples with extremely high-
dimensions, leading to computational problems and curse of
dimensionality. Recently, several algorithms have been proposed
for discriminative analysis of tensor objects (Yan et al., 2005; Tao
et al., 2007; Zhang et al., 2009; Nie et al., 2009; Phan and Cichocki,
2010). They are mainly some kind of generalization of LDA to mul-
ti-way data. However, as noted in (Petridis and Perantonis, 2004),
mutual information (MI) between features and labels is a more
general criterion for evaluating the discriminative power of fea-
tures. As opposed to LDA-based techniques, MI-based methods
use information contained in the data beyond second order statis-
tics. In this paper we propose a method for supervised FE from
multi-way data based on maximization of an approximation of
mutual information between the extracted features and class
labels. By optimizing a suitable cost function we aim to obtain
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Filipović).
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more discriminative features and achieve superior accuracy in
classification problems.

The rest of the paper is organized as follows. In Section 2 we
give basic preliminaries of tensor algebra, linear FE and some infor-
mation about previous work in tensor discriminant analysis. In
Section 3 we propose a method for supervised feature extraction
for tensor objects. The experimental results are given in Section 4,
and Section 5 contains concluding remarks.

2. Preliminaries and previous work

In this section we give definitions of basic operations with ten-
sors and present information-theoretic linear FE method based on
mutual information. Also, we briefly comment previous work on
feature extraction for tensor objects. In the following scalars will
be denoted by italic letters (e.g., x), vectors by bold lowercase let-
ters (e.g., x), matrices by bold capital letters (e.g., X) and tensors by
bold capital calligraphic letters (e.g., X ). Tensor notation in this pa-
per mostly follows conventions presented in Kolda and Bader
(2009) and Cichocki et al. (2009).

2.1. Basics of tensor notation, operations and decompositions

Tensor is a multi-way generalization of vector and matrix, and
order of tensor is equal to the number of its indices. For example,
tensor X 2 RI1�I2�;...;�IN is a tensor of order N (i.e., an N-way tensor)
with elements xi1 i2 ;...;iN . Vector xi1 ;...;in�1 :inþ1 ;...;iN ¼ X ði1; . . . ; in�1; :;

inþ1; . . . ; iNÞ obtained by fixing all indices except in is called mode-
n fiber. Often it is convenient to present tensor in matrix form, so
we define mode-n matricization of tensor X as a matrix

XðnÞ 2 R
In� P

N

k¼1;k–n
Ik that contains mode-n fibers as columns. Ordering

of columns in matricization is not important, as long as it is consis-
tent in all computations. Inner product of tensors
X ;Y 2 RI1�I2�;...;�IN with the same order and dimensions is
defined as hX ;Yi ¼

P
i1 ;...;iN

xi1 ;...;iN yi1 ;...;iN , and it induces a tensor

norm kXk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hX ;Xi

p
. Mode-n product of tensor

Y 2 RI1�I2�;...;�In�1�Rn�Inþ1�;...;�IN and matrix AðnÞ 2 RIn�Rn results in a

new tensor X ¼ Y�nAðnÞ 2 RI1�I2�;...;�In�1�In�Inþ1�;...;�IN . It is
defined (in equivalent tensor, matricized and vectorized forms)
as follows

X ¼ Y�nAðnÞ

XðnÞ ¼ AðnÞYðnÞ

vecðXðnÞÞ ¼ I� AðnÞ
� �

vec YðnÞ
� �

;

ð1Þ

where vec(�) is column-wise vectorization of a matrix, I denotes an
identity matrix of appropriate size, and � is the Kronecker product
(Cichocki et al., 2009; Kolda and Bader, 2009). This multiplication is
commutative when applied in distinct modes (m – n)

ðX�nAÞ�mB ¼ ðX�mBÞ�nA ¼ X�nA�mB; ð2Þ

where matrices A and B have appropriate dimensions. Multiplica-
tion in all possible modes with a set of matrices A(n), n 2 {1, . . . ,N}
is denoted as

X � fAg ¼ X�1Að1Þ�2Að2Þ; . . . ;�NAðNÞ: ð3Þ

Multiplication in all modes except mode n is denoted as

X��nfAg ¼ X�1Að1Þ; . . . ;�n�1Aðn�1Þ�nþ1Aðnþ1Þ
; . . . ;�NAðNÞ: ð4Þ

Basic decomposition of tensor X is the Tucker decomposition
that can be expressed as

X � F � fAg; ð5Þ

where AðnÞ 2 RIn�Rn ; n 2 f1; . . . ;Ng are factor matrices, and
F 2 RR1�R2�;...;�RN is the core tensor (Tucker, 1964; Tucker, 1966).
In this paper we are interested in Tucker decomposition with
Rn 6 In. If there exists such m 2 {1, . . . ,N} that Rm < Im then the core
tensor F has smaller dimension in mode m than the original
tensor X . This can be seen as a form of compression or
dimensionality reduction along the mode m, resulting in
smaller number of elements in the core tensor, than in the original
tensor.

2.2. Maximization of mutual information for linear feature extraction

Let {xk,yk}, k 2 {1, . . . ,K} be a set of K available samples xk 2 RI ,
paired with their class labels yk 2 {1, . . . ,C} where C is the number
of classes. The task of linear FE is to find a matrix W 2 RI�R such
that features

fk ¼WT xk ð6Þ

are as discriminative as possible, with typically R� I. The aim of
LDA is to find a subspace in which the class means are well sepa-
rated while at the same time within class scatters are small, and
it is known to be optimal in the case of homoscedastic Gaussian
model, when all classes have Gaussian distribution with the same
covariance. However, this model is often too restrictive for model-
ing real-world data (Petridis and Perantonis, 2004). Another line
of reasoning has led to the development of FE methods based on
information theory (Torkkola, 2003; Leiva-Murillo and Artès-Rodrì-
gues, 2007; Kamandar and Ghassemian, 2013). It was shown that
maximization of mutual information (MMI) is optimal criterion un-
der the zero information loss (ZIL) model (Petridis and Perantonis,
2004). The ZIL model assumes that the observation space can be di-
vided into R-dimensional signal subspace and (I � R)-dimensional
noise subspace, with signal subspace containing all information
about the original observations. This is a common assumption in
source separation and it is more general then homoscedasticity or
heteroscedasticity of class-conditional distributions. It was demon-
strated that MMI-based methods achieve state-of-the-art results on
several problems (Torkkola, 2003; Leiva-Murillo and
Artès-Rodrìgues, 2007).

Let x denote a random vector with values in RI that comes from
the same statistical model as the available samples, paired with
corresponding label y that is a discrete random variable with val-
ues in {1, . . . ,C}. Then mutual information between x and y is given
as

Iðx; yÞ ¼ hðxÞ �
XC

k¼1

Pðy ¼ kÞhðxjy ¼ kÞ; ð7Þ

where h is Shannon’s differential entropy, and Pðy ¼ kÞ a priori
probability of class k. The definitions of entropies are given as
follows

hðxÞ ¼ �
Z

pxðtÞ log pxðtÞdt; and hðxjy ¼ kÞ

¼ �
Z

pxjyðtjkÞ log pxjyðtjkÞdt; ð8Þ

with p denoting appropriate probability density function (Cover and
Thomas, 1991). It was noted in (Leiva-Murillo and Artès-Rodrìgues,
2007; Petridis and Perantonis, 2004) that if the ZIL model holds,
then there is always an orthonormal matrix WI�R that satisfies
I(f,y) = I(WTx,y) = I(x,y), i.e., there is no loss of information after
dimensionality reduction. In real-world scenario ZIL model can only
be approximately satisfied and the dimension of the signal subspace
cannot be exactly determined. Since the MI cannot be increased by
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any deterministic transformation (Cover and Thomas, 1991), a real-
istic objective is to find a suboptimal transformation that achieves
maximal MI between obtained features and labels. The projection
matrix for linear FE can be defined as a solution of the following
optimization problem

W� ¼ arg max
W2RI�R

Iðf; yÞ ¼ arg max
W2RI�R

IðWT x; yÞ: ð9Þ

However, estimation of mutual information for R-dimensional ran-
dom vector is not easy, since it involves estimation of entropy for a
random vector. To alleviate this problem, an approximation ~I that
uses only MI between scalar random variables was proposed in Lei-
va-Murillo and Artès-Rodrìgues (2007) as

~Iðf; yÞ ¼
XR

r¼1

Iðfr ; yÞ ¼
XR

r¼1

I wT
r x; y

� �
; ð10Þ

where wr denotes r-th column of matrix W. Since there are several
good estimators of entropy for scalar random variables this approx-
imation can be computed efficiently, e.g., through approximation of
negentropy as given in Appendix A (Hyvärinen et al., 2001). Mutual
information I and its approximation ~I are connected through
relation

~Iðf; yÞ ¼ Iðf; yÞ þ ½IðfÞ � IðfjyÞ	: ð11Þ

It was also demonstrated in Leiva-Murillo and Artès-Rodrìgues
(2007) on several real-world datasets that the difference between
the mutual information and its approximation is rather small,
and use of approximation (10) is justified. Problem of linear FE
can then be formulated as

W� ¼ arg max
WT W¼I

~Iðf; yÞ ¼ arg max
WT W¼I

XR

r¼1

IðwT
r x; yÞ: ð12Þ

In order to maximize (12), gradient of the cost function with re-
spect to W has to be calculated as
rW

~Iðf; yÞ ¼ rw1 IðwT
1x; yÞ; . . . ;rwR I wT

Rx; y
� �� �

2 RI�R, with each col-
umn of rW

~Iðf; yÞ calculated using (A.3) in Appendix A.

2.3. Feature extraction for tensor objects

Let fX k; ykg, k 2 {1, . . . ,K} be a set of K available samples (i.e., a
training set), represented by tensors X k 2 RI1�;...;�IN paired with
their class labels yk 2 {1, . . . ,C} where C is the number of classes.
The goal of FE is to construct a relatively small set of D discrimina-
tive features, with typically D�

QN
n¼1In. Usually, FE for tensor ob-

jects is performed by representing each sample by its Tucker
decomposition

X k � F k � fAg; k 2 f1; . . . ;Kg; ð13Þ

where factor matrices AðnÞ 2 RIn�Rn are common for all samples. This
can be seen as a joint Tucker decomposition of K tensors, i.e., a Tuck-
er-N decomposition of (N + 1)-order tensor as in Phan and Cichocki
(2010). The elements of the core tensor F k are interpreted as fea-
tures for the k-th sample. Decomposition (13) can be performed
in supervised or unsupervised manner. For example, methods such
as higher-order singular value decomposition (HOSVD) or higher
order orthogonal iteration (HOOI) can be used to obtain decompo-
sitions in form (13) with orthogonal projection matrices, with
objective being minimal norm between sample X k and its Tucker
decomposition (Phan and Cichocki, 2010). Also, constraints such
as nonnegativity can be imposed on the core and factor matrices,
depending on the nature of the data contained in the samples, to
improve interpretability of the decomposition (Cong et al., 2012;
Phan and Cichocki, 2011). These unsupervised approaches proved
to be useful in various problems, such as image and EEG analysis.

However, in classification scenario it is useful to use information
contained in the class labels. This naturally leads to development
of methods for tensor discriminant analysis, such as discriminant
analysis with tensor representation (DATER) (Yan et al., 2005), gen-
eral tensor discriminant analysis (Tao et al., 2007), tensor linear
Laplacian discrimination (TLLD) (Zhang et al., 2009), local tensor
discriminant analysis (LTDA) (Nie et al., 2009) and higher-order dis-
criminant analysis (HODA) (Phan and Cichocki, 2010). Mentioned
methods are generalizations of linear discriminant analysis to the
tensor representation. Extracted features are obtained by projecting
samples using orthogonal projection matrices UðnÞ 2 RIn�Rn so that
feature tensors F k ¼ X k � fUgT have maximal between-class scat-
ter and minimal within class scatter. Projection matrices are sought
in alternating manner, by fixing all projection matrices except one,
to obtain a locally optimal solution. In each step a single projection
matrix is obtained by maximizing a trace ratio or trace difference
problem, similar as in LDA. Additionally, local scatters are defined
in LTDA to overcome the assumption of normally distributed sam-
ples in each class, inherited from LDA. This method is especially
interesting since it includes an automatic method for selecting
dimensions Rn of the core tensor (Nie et al., 2007). However, the
drawback of the above mentioned methods is that they use only
information contained in the between- and within-scatter matrices,
neglecting information beyond second order moments of the data.

3. Maximization of mutual information for tensor
decomposition

In order to extract features from tensor objects that are more
discriminative, we adopt MMI-based criteria for finding projection
matrices.

3.1. Proposed method

Without loss of generality we can consider three-way samples.
Let X denote a three-way random tensor with values in RI1�I2�I3

and y corresponding label that is a discrete random variable with
values in {1, . . . ,C}. Then X can be represented through Tucker
decomposition with orthogonal projection matrices and the core

F ¼ X�1Uð1ÞT�2Uð2ÞT�3Uð3ÞT : ð14Þ

The elements of the core tensor can be seen as features that can
be used for classification. We aim to find projection matrices such
that the features in the core tensor F are as discriminative as pos-
sible. Since most of the existing classifiers work with vectors2, the
core tensor is vectorized to obtain features f = vec(F(1)), with values
in RR1R2R3 . Then, the features can be expressed as

f ¼ Uð3ÞT � Uð2ÞT � Uð1ÞT
� �

vecðXð1Þ:Þ: ð15Þ

This can be seen as a linear FE in form (6), with transformation
matrix W ¼ Uð3Þ � Uð2Þ � Uð1Þ 2 RI1I2I3�R1R2R3 that has structure in-
duced by the Kronecker product. Finding all optimal projection
matrices at once is not an easy task due to the size of the matrix
W and involved cross-products of elements of the projection
matrices. However, if we use alternating approach we can obtain
a single projection matrix at a time, in similar fashion as with other
tensor decomposition algorithms.

Let us assume that all projection matrices except U(1) are fixed.
Then the core can be expressed as

F ¼ Z�1�1Uð1ÞT ; ð16Þ

2 Recent work on classifiers for tensor objects can be found in Signoretto et al.
(2011).
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with Z�n ¼ X��nfUgT . This can be expressed in vectorized form as

vecðFð1ÞÞ ¼ I� Uð1ÞT
� �

vec Z�1
ð1Þ

� �
; ð17Þ

where I is the identity matrix with dimensions R2R3 � R2R3. Let fr2r3

denote a mode-1 fiber of F defined as fr2r3 ¼ F ð:; r2; r3Þ. We aim to
obtain projection matrix U(1) that results in maximal mutual infor-
mation between the extracted features f = vec(F(1)) and the class la-
bel y. This can be performed through maximization of
approximation (10) of MI, yielding

~I1ðf; yÞ ¼
XR1

r1¼1

XR2

r2¼1

XR3

r3¼1

Iðfr1r2r3 ; yÞ ¼
XR2

r2¼1

XR3

r3¼1

~Iðfr2r3 ; yÞ; ð18Þ

where ~Iðfr2r3 ; yÞ is given as

~I1ðfr2r3 ; yÞ ¼ ~I Uð1ÞT zr2r3 ; y
� �

¼
XR1

r1¼1

I uð1ÞTr1
zr2r3 ; y

� �
: ð19Þ

Then the cost function for estimating projection matrix U(1) can
be expressed in the following form

~I1ðf; yÞ ¼
XR1

r1¼1

XR2

r2¼1

XR3

r3¼1

I uð1ÞTr1
zr2r3 ; y

� �
: ð20Þ

Notice that the expression for ~I1 involves calculation of mutual
information between scalar random variables that can be com-
puted efficiently. Mode-1 projection matrix U(1) can then be found
by solving the following optimization problem

Uð1Þ ¼ arg max
Uð1ÞT Uð1Þ¼I

~I1ðf; yÞ: ð21Þ

In order to employ the optimization procedure to find the
mode-1 projection matrix we need to calculate the gradient with
respect to U(1), i.e., rUð1Þ

~I1ðf; yÞ ¼ ruð1Þ1

~I1ðf; yÞ; . . . ;ruð1ÞR1

~I1ðf; yÞ
	 


.
Each column of the gradient matrix is given as

ruð1Þr1

~I1ðf; yÞ ¼
XR2

r2¼1

XR3

r3¼1

ruð1Þr1

I uð1ÞTr1
zr2r3 ; y

� �
; ð22Þ

for r1 2 {1, . . . ,R1}. For calculation of (20) and (22) we use approxi-
mations of mutual information and its gradient for scalar variables
given with (A.2) and (A.3) in Appendix A.

In case of a N-way tensor, cost function for estimation of the
mode-n projection matrix U(n) is calculated as

~Inðf; yÞ ¼
X

r1 ;...;rN

I uðnÞTrn
zr1 ;...;rn�1 ;rnþ1 ;...;rN ; y

� �
; ð23Þ

and components of its gradient
rUðnÞ

~Inðf; yÞ ¼ ruðnÞ1

~Inðf; yÞ; . . . ;ruðnÞRn

~Inðf; yÞ
	 


as

ruðnÞrn

~Inðf; yÞ ¼
X

r1 ;...;rn�1 ;rnþ1 ;...;rN

ruðnÞrn
I uðnÞTrn

zr1 ;...;rn�1 ;rnþ1 ;...;rN ; y
� �

: ð24Þ

The mode-n projection matrix is found by solving the following
optimization problem

UðnÞ ¼ arg max
UðnÞT UðnÞ¼I

~Inðf; yÞ: ð25Þ

In this way an iterative alternating procedure can be used to
estimate projection matrices U(n). Pseudocode of the proposed ap-
proach for N-way tensor is given in Table 1.

3.2. Optimization and initialization

Some optimization method is needed to find a single projection
matrix in each step of the alternating procedure by solving (25). In
Leiva-Murillo and Artès-Rodrìgues (2007) a single column of the
projection matrix was obtained at a time using the gradient ascent

method. Orthogonality constraints were enforced after each step
by performing Gramm–Schmidt (GS) orthogonalization of the cur-
rent column with respect to previous columns. In this approach,
search space for a column of projection matrix is orthogonal to
the subspace spanned by previously obtained projections. We
tested this approach but it resulted in inferior performance com-
pared to the results reported in the experimental section of this
paper.

Here we propose to obtain the whole projection matrix U(n) at
once by maximizing (25) over the Stiefel manifold

MRn
In

:¼ UðnÞ 2 RIn�Rn : UðnÞT UðnÞ ¼ I
n o

. A feasible method for optimi-

zation with orthogonality constraints was proposed recently in
Wen and Yin (2012a). The proposed approach is a gradient-based
method accelerated with a curvilinear search over the Stiefel man-
ifold. Given a feasible initial point U(n) and the gradientrUðnÞ

~Inðf; yÞ,
a skew-symmetric matrix A is calculated as

A :¼ GUðnÞT � UðnÞGT ; ð26Þ

with G :¼ �rUðnÞ
~Inðf; yÞ. Then a simple closed form update rule can

be used to find a new point as

UðnÞ  Q ðsÞUðnÞ; with Q ðsÞ :¼ Iþ s
2

A
� ��1

I� s
2

A
� �

; ð27Þ

with s 2 R denoting the step size. This update has several favorable
properties. It is easy to verify that the new point is also feasible
w.r.t. orthogonality constraints, i.e., the condition (U(n))T(U(n)) = I
holds after the update, for all s ¼ R. For s P 0 update (27) defines
an ascent path for ~Inðf; yÞ, so a curvilinear search can be utilized
for selecting the appropriate step size s and to ensure convergence
to a stationary point (Wen and Yin, 2012a). Outline of this optimi-
zation procedure is given in Table 2. In our experiments we used
nonmonotone curvilinear search with Barzilai–Borwein step size.
For more details regarding the step size selection strategies see
Wen and Yin (2012a,b) and references therein.

The alternating procedure is repeated until some convergence
condition is satisfied. Our stopping criterion was the change of
the cost function ~Iðf; yÞ in subsequent iterations of the outer loop
in Table 1. There is no guarantee that the alternating procedure
will lead to the globally optimal solution, only to a point where
the cost function ceases do decrease, similar as in other algorithms
based on alternating optimization (Cichocki et al., 2009; Zhang
et al., 2009; Nie et al., 2009; Phan and Cichocki, 2010). Therefore
an appropriate initialization is important, since the iterative proce-
dure can be interpreted as enhancement of the initial projection
matrices by maximizing discriminative power of features. By wise-
ly selecting initial point the described procedure can lead to a
much better solution than initially given. A reasonable choice
would be to use some of the existing tensor decomposition algo-
rithms for initialization. In the experimental section we tested ini-
tialization with HOSVD and LTDA. An alternative would be to
initialize projection matrices randomly, but this would require a
multi-start strategy to identify the best initialization (Cichocki
et al., 2009).

4. Experimental results

In order to assess the performance of our approach we per-
formed several experiments on the standard datasets with images
of objects, face images and handwritten digits. We compared the
proposed method for feature extraction with HOSVD, HOOI (imple-
mented in Tensor toolbox (Bader et al., 2012)), HODA and TLLD
(both implemented in NFEA toolbox (Phan, 2012)) and LTDA3.

3 Comparison of tensor-based FE and linear FE methods can be found in Nie et al.
(2009), Zhang et al. (2009) and Hou et al. (2013).
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The proposed method is labeled as mutual information-based tensor
decomposition (MITD). In all experiments we used k-nearest neigh-
bor classifier with k = 3 neighbors and Euclidean distance (kNN3),
and linear support vector machine (linSVM) implemented in LIBSVM
library (C-SVM with parameter C = 1) (Chang and Lin, 2011). Param-
eters of the classifiers were fixed, and accuracy was estimated
through 50 random partitions of the data set. Note that our goal
was not to achieve maximal accuracy, but to show that the proposed
feature extraction method can be used to improve classification per-
formance. Therefore we used simple and well-known classifiers.
Some samples from the databases used in the experiments are
shown in Fig. 1.

Implementation details of the proposed algorithm were as
follows. The maximum number of iterations was set to 50, and
the tolerance on change of the cost function was set to 10�5.
However, in almost all experiments a small number of iterations
of the outer loop were performed (typically two). Projection
matrices were initialized using HOSVD or LTDA (in tables initial-
ization is denoted in brackets). Optimization problem (25) was
solved using gradient ascent over Stiefel manifold and nonmono-
tone curvilinear search, with code available at Wen and Yin
(2012b). The maximum number of iterations for the solver was
set to 100, parameter s for line search was set to 10�3 and all
tolerances to 10�5. For NFEA toolbox we set the maximum num-
ber of iterations to 50, tolerance to 10�8, initialization to eig, and
we used the traceratio method without regularization to extract
fully discriminative projection matrices (Phan, 2012). For LTDA
we set kw = 3 and kb = 20 with maximum of 20 iterations and
tolerance 10�5, while we used HOOI with tolerance 10�8 and
maximally 1000 iterations. All experiments were performed in
MATLAB 2010b environment.

4.1. Object recognition

The Columbia University Image Library (COIL-20) dataset con-
sists of grayscale images of 20 objects. Each object is represented
by 72 grayscale images obtained by rotating the object with step
of 5�. We downsampled each image to 32 � 32 pixels, and four,
six or eight samples per class were randomly selected for train-
ing set with remaining samples forming the test set. No prepro-
cessing was done, i.e., raw images were used as input to the
feature extraction procedure. The number of components in each
mode was set to (R1,R2) 2 {(5,5), (10,10)} and no feature selec-
tion was performed on the extracted features. Hence, we use
all of the 25 or 100 features per sample. Classification accuracy
was estimated over 50 random partitions and results are pre-
sented in Table 3. We also performed a series of experiments
with the automatically selected number of components using
the procedure described in Nie et al. (2009). The LTDA with
automatically selected dimensions was compared with the pro-
posed method initialized using LTDA. In almost all experiments
MITD initialized with LTDA resulted in best classification accu-
racy. While other methods achieve lower accuracy when the
number of features is increased, the proposed approach results
in even better class discrimination.

We also performed comparative analysis on object recognition
from color images, using the COIL-100 dataset that contains color
images of 100 objects. Each object is represented by 72 color
(RGB) images, obtained through the same rotation procedure as
previously described. Each image was downsampled to
32 � 32 pixels and we performed the same experiments as with
COIL-20 data: with fixed number of components (R1,R2,R3) 2
{(5,5,3), (10,10,3)}, and with dimensions automatically selected
using LTDA. Results are shown in Table 4. It can be seen that the
proposed approach significantly outperforms competing methods.
While the MITD initialized with HOSVD is better than other meth-
ods, even better results are obtained when MITD is initialized with
LTDA. Again, only the proposed approach benefits from the in-
creased number of features, while the accuracy for other methods
is significantly lower. Note that in experiments on COIL-100 there
is no dimensionality reduction along the mode-3, since for RGB
images I3 = 3 and in experiments dimension in mode-3 was set to
R3 = 3 (both automatically and manually). However, as can be seen
from the Eq. (15), it is important to perform decomposition along
the mode-3 since the projection matrix U(3) affects the subspace
that contains the extracted features.

Table 1
Outline of the proposed method.

Input: Set of K training samples with labels, fX k 2 RI1�;...;�IN ; ykg,
k 2 {1, . . . ,K}.

Parameters: Number of features for each mode (R1, . . . ,RN).

Initialize UðnÞ 2 RIn�Rn , n 2 {1, . . . ,N}.
Repeat

% alternating procedure
For n = 1 to N

% assume all matrices except in mode-n are fixed

Z�n
k ¼ X k��nfUgT

% find the mode-n matrix using the optimization procedure in Table 2

UðnÞ ¼ arg max
UðnÞT UðnÞ¼I

~Inðf; yÞ

End
Until (convergence)

Output: Projection matrices UðnÞ 2 RIn�Rn , n 2 {1, . . . ,N}.

Table 2
Optimization procedure for (25), (Wen and Yin, 2012a).

Input: Feasible initial projection matrix Un.
k 0
Repeat

Calculate gradient rUðnÞ
~In ðf; yÞ, according to (24).

Calculate A, according to (26).
Select the step size sk using curvilinear search.
Update U(n) Q(sk)Un, according to (27).
k k + 1

Until rUðnÞ
~Inðf; yÞ

��� ���
F

 tolerance

� �
Output: New projection matrix U(n).

Fig. 1. Images used in the experiments. From top to bottom: COIL-20, COIL-100,
SFD, and MNIST.
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4.2. Face recognition

The Sheffield Face database (SFD) consists of 575 images of 20
individuals with mixed race gender and appearance. Each individ-
ual is shown in a range of poses from profile to frontal views

(Graham and Allison, 1998), with each image cropped to
112 � 92 pixels with 8 bit gray levels per pixels. Prior to feature
extraction all images were downsampled to 28 � 23 pixels, and
raw images were used as input for feature extraction. Training
set was formed by randomly selecting four, six or eight samples

Table 3
Object recognition (COIL-20). Accuracy was estimated using 50 random partitions. HO denotes hold-out ratio. Results reported in % as accuracy (standard deviation).

Method 8 train (HO90%) 6 train (HO93%) 4 train (HO95%)

kNN3 linSVM kNN3 linSVM kNN3 linSVM

Projection matrices U(1) and U(2) with 5 components, (R1,R2) = (5,5)
HOSVD 81.84 (1.42) 89.49 (1.49) 77.92 (1.85) 84.89 (1.97) 72.41 (2.01) 79.49 (1.78)
HOOI 81.92 (1.35) 89.48 (1.47) 78.02 (1.91) 85.03 (1.97) 72.31 (1.97) 79.48 (1.83)
HODA 75.67 (2.46) 84.44 (2.62) 70.70 (2.62) 79.84 (2.77) 63.91 (3.11) 73.27 (3.02)
TLLD 75.88 (2.36) 83.43 (2.15) 70.45 (3.11) 78.66 (2.98) 62.63 (3.27) 72.44 (2.85)
LTDA 86.38 (2.37) 91.88 (1.54) 83.01 (1.70) 88.98 (2.23) 76.52 (2.90) 82.44 (2.77)
MITD (HOSVD) 81.52 (1.71) 89.53 (1.61) 77.33 (2.37) 84.67 (2.37) 71.82 (2.10) 79.13 (2.12)
MITD (LTDA) 86.66 (2.35) 92.01 (1.60) 83.04 (1.74) 89.06 (2.32) 76.30 (4.11) 82.13 (3.81)

Projection matrices U(1) and U(2) with 10 components, (R1,R2) = (10,10)
HOSVD 69.89 (1.94) 82.78 (1.58) 64.51 (2.33) 77.52 (2.01) 58.41 (2.90) 71.24 (2.20)
HOOI 69.83 (2.05) 82.75 (1.57) 64.42 (2.32) 77.45 (2.03) 58.22 (2.92) 71.05 (2.25)
HODA 61.21 (2.76) 78.79 (1.97) 55.90 (2.54) 73.77 (2.09) 49.79 (2.99) 67.72 (2.42)
TLLD 60.99 (2.84) 77.98 (2.00) 55.17 (2.95) 72.75 (2.00) 48.62 (3.75) 66.34 (2.27)
LTDA 75.18 (2.07) 85.69 (1.89) 71.13 (2.69) 81.08 (2.41) 65.43 (2.75) 73.66 (2.48)
MITD (HOSVD) 70.45 (1.73) 82.93 (1.66) 65.27 (2.15) 77.78 (2.18) 58.96 (2.91) 71.53 (2.10)
MITD (LTDA) 87.87 (1.86) 94.74 (1.26) 84.95 (2.88) 91.62 (2.01) 78.48 (6.45) 84.89 (5.63)

Automatically selected number of components

Number of components 8 train (HO90%) 6 train (HO93%) 4 train (HO95%)

R1 R2 R1 R2 R1 R2

Min 12 4 12 5 13 6
Max 16 6 16 8 17 9
Average 13.5 5.46 14.04 6.28 14.78 7.64

Method kNN linSVM kNN3 linSVM kNN3 linSVM

LTDA 85.20 (2.13) 91.90 (1.55) 79.53 (3.34) 87.20 (2.73) 66.68 (3.28) 77.04 (2.85)
MITD (LTDA) 87.16 (2.02) 93.21 (1.50) 82.12 (3.54) 88.66 (3.03) 73.35 (6.16) 80.63 (5.13)

Table 4
Object recognition (COIL-100). Accuracy was estimated using 50 random partitions. HO denotes hold-out ratio. Results reported in % as accuracy (standard deviation).

Method 8 train (HO90%) 6 train (HO93%) 4 train (HO95%)

kNN3 linSVM kNN3 linSVM kNN3 linSVM

Projection matrices U(1), U(2) and U(3) with (R1,R2,R3) = (5,5,3)
HOSVD 79.57 (0.82) 88.12 (0.86) 74.62 (0.91) 83.49 (0.93) 67.45 (0.94) 76.69 (1.20)
HOOI 79.71 (0.78) 88.34 (0.84) 74.81 (0.94) 83.79 (0.95) 67.74 (0.93) 77.01 (1.20)
HODA 73.36 (1.16) 81.47 (1.28) 68.07 (1.13) 76.32 (1.09) 61.63 (2.05) 70.19 (2.46)
TLLD 72.60 (0.96) 80.88 (0.91) 67.41 (1.11) 75.53 (1.08) 59.67 (1.17) 68.00 (1.14)
LTDA 81.08 (0.96) 88.35 (0.79) 76.64 (1.50) 84.19 (1.14) 70.28 (1.40) 76.94 (1.22)
MITD (HOSVD) 83.44 (1.94) 91.38 (1.77) 78.33 (3.13) 86.89 (2.97) 71.12 (4.14) 79.99 (4.13)
MITD (LTDA) 87.97 (2.11) 93.63 (1.51) 85.82 (2.15) 91.77 (1.77) 80.22 (2.71) 87.01 (2.46)

Projection matrices U(1), U(2) and U(3) with (R1,R2,R3) = (10,10,3)
HOSVD 64.61 (0.99) 79.40 (0.92) 59.47 (1.21) 74.41 (0.79) 52.23 (1.52) 66.88 (0.87)
HOOI 64.55 (0.97) 79.43 (0.96) 59.30 (1.20) 74.41 (0.78) 52.10 (1.49) 66.84 (0.86)
HODA 62.47 (1.12) 77.60 (0.77) 57.59 (1.54) 72.49 (0.76) 50.43 (2.02) 65.05 (0.99)
TLLD 61.26 (1.07) 77.26 (0.83) 56.00 (1.51) 72.05 (0.80) 48.44 (1.97) 64.71 (0.91)
LTDA 71.69 (1.47) 81.19 (0.96) 67.68 (1.81) 76.73 (1.34) 61.09 (1.79) 69.62 (1.43)
MITD (HOSVD) 83.71 (1.46) 92.52 (1.15) 79.55 (1.47) 89.47 (1.23) 74.07 (1.76) 84.63 (1.67)
MITD (LTDA) 88.68 (1.87) 94.44 (1.18) 85.06 (1.98) 91.53 (1.50) 80.46 (1.95) 87.80 (1.89)

Automatically selected number of components

Number of components 8 train (HO90%) 6 train (HO93%) 4 train (HO95%)

R1 R2 R3 R1 R2 R3 R1 R2 R3

Min 6 6 3 6 7 3 7 6 3
Max 8 9 3 9 10 3 11 11 3
Average 6.64 7.68 3.00 7.90 7.96 3.00 9.52 8.76 3.00

Method kNN linSVM kNN3 linSVM kNN3 linSVM

LTDA 76.80 (1.60) 84.88 (1.21) 71.90 (1.95) 79.82 (1.58) 63.30 (2.42) 71.35 (2.06)
MITD (LTDA) 88.71 (1.65) 94.29 (1.24) 85.50 (2.37) 91.69 (1.78) 81.32 (1.85) 88.46 (1.74)
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for each class with remaining images forming the test set. In our
experiments we set the number of components (R1,R2) 2
{(5,5), (10,10)} and no feature selection was performed on the ex-
tracted features. Classification accuracy was estimated on 50 ran-
dom partitions and results are presented in Table 5. We also
performed a series of experiments with automatically selected
number of components, and compared LTDA with automatically
selected number of dimensions against MITD initialized using
LTDA. With the number of components in each projection matrix
fixed to five, in most cases the best results are obtained using LTDA
features. However, when the number of features is increased, MITD
initialized with LTDA extracts more discriminative features and
achieves superior accuracy. In direct comparison of LTDA and MITD
initialized using automatically selected number of projections the
proposed method is much better. Also, this experiment demon-
strates that the performance of LTDA using automatically selected
dimensions is suboptimal, while the proposed procedure can pro-
vide significant increase in overall performance.

4.3. Classification of handwritten digits

In this experiment we used a subset of MNIST database of
images of handwritten digits. MNIST originally consists of
60,000 training samples and 10,000 test samples, with each sam-
ple containing size-normalized and centered image of a digit. All
images are in grayscale and have fixed size of 28 � 28 pixels. We
selected first 50 images of each digit to create data set for our
experiments. Training set was formed by randomly selecting five
or ten images per class, with remaining images used as a test
set. Classification accuracy was estimated using 50 random par-
titions and results are presented in Table 6. Here we performed
comparison of all methods using the automatically selected
dimensions. It can be seen that HOSVD features result in better
accuracy than the ones obtained with LTDA. However, in almost
all experiments MITD initialized with LTDA achieved the best
accuracy.

Table 6
Recognition of handwritten digits with automatically selected number of components. Accuracy was estimated using 50 random partitions. HO denotes hold-out ratio. Results
reported in % as accuracy (standard deviation).

Number of components 10 train (HO80%) 5 train (HO90%)

R1 R2 R1 R2

Min 5 5 7 5
Max 9 9 10 9
Average 7.38 6.22 8.42 6.70

Method kNN linSVM kNN3 linSVM

HOSVD 70.31 (2.30) 73.39 (2.80) 59.14 (3.45) 63.44 (3.61)
HOOI 70.22 (2.13) 73.64 (2.85) 59.43 (3.42) 63.85 (3.64)
HODA 66.63 (3.74) 71.19 (3.31) 55.92 (3.32) 62.73 (3.66)
TLLD 66.72 (3.44) 70.94 (2.93) 56.69 (3.91) 62.70 (3.75)
LTDA 71.44 (2.59) 72.81 (2.24) 57.17 (3.45) 59.38 (3.09)
MITD (HOSVD) 71.17 (2.37) 74.00 (2.64) 61.33 (4.79) 65.26 (4.30)
MITD (LTDA) 73.39 (2.27) 74.56 (2.40) 61.38 (3.89) 62.41 (4.46)

Table 5
Face recognition (SFD). Accuracy was estimated using 50 random partitions. Results reported in % as accuracy (standard deviation).

Method 8 train (HO90%) 6 train (HO93%) 4 train (HO95%)

kNN3 linSVM kNN3 linSVM kNN3 linSVM

Projection matrices U(1) and U(2) with 5 components, (R1,R2) = (5,5)
HOSVD 86.14 (2.73) 94.06 (1.78) 79.37 (2.66) 90.26 (2.38) 69.08 (3.80) 81.56 (2.96)
HOOI 85.81 (2.92) 94.22 (1.86) 79.16 (2.80) 90.46 (2.69) 68.85 (4.07) 81.71 (3.14)
HODA 77.35 (3.19) 92.12 (2.91) 70.76 (3.87) 86.51 (4.29) 60.30 (4.25) 74.63 (4.63)
TLLD 76.80 (2.89) 92.72 (2.44) 70.53 (3.54) 87.21 (3.15) 60.27 (4.00) 75.14 (4.17)
LTDA 90.24 (2.74) 94.79 (1.95) 84.16 (2.44) 90.62 (2.28) 73.71 (3.65) 81.38 (2.69)
MITD (HOSVD) 86.22 (2.63) 94.07 (1.88) 80.00 (2.93) 90.57 (2.40) 69.68 (4.01) 82.06 (3.05)
MITD (LTDA) 90.20 (2.82) 94.87 (2.01) 83.96 (2.48) 90.54 (2.27) 73.60 (3.41) 81.67 (2.94)

Projection matrices U(1) and U(2) with 10 components, (R1,R2) = (10,10)
HOSVD 81.35 (3.13) 92.56 (2.32) 74.90 (3.52) 87.28 (2.98) 64.29 (3.63) 76.36 (2.94)
HOOI 81.27 (3.13) 92.55 (2.28) 74.72 (3.52) 87.17 (2.99) 64.13 (3.64) 76.25 (2.96)
HODA 77.73 (3.15) 90.35 (2.53) 69.99 (3.77) 83.60 (3.61) 59.79 (3.69) 72.17 (3.48)
TLLD 76.54 (3.41) 89.93 (2.64) 68.94 (3.44) 83.11 (3.24) 58.90 (3.97) 70.98 (3.94)
LTDA 79.45 (4.14) 88.31 (2.76) 71.69 (3.80) 82.37 (2.81) 60.79 (3.84) 69.99 (3.45)
MITD (HOSVD) 82.01 (4.11) 93.50 (2.57) 73.89 (3.68) 87.32 (3.06) 63.39 (3.40) 76.16 (3.19)
MITD (LTDA) 92.11 (2.44) 96.43 (1.52) 87.07 (2.65) 93.82 (2.01) 77.54 (3.55) 86.89 (3.29)

Automatically selected number of components

Number of
components

8 train (HO90%) 6 train (HO93%) 4 train (HO95%)

R1 R2 R1 R2 R1 R2

Min 11 3 11 4 11 5
Max 13 6 14 6 15 11
Average 11.8 4.6 12.3 5.02 13.3 6.68

Method kNN linSVM kNN3 linSVM kNN3 linSVM

LTDA 89.49 (2.71) 94.63 (1.86) 83.47 (2.71) 90.10 (2.25) 67.56 (4.09) 76.19 (3.66)
MITD (LTDA) 90.42 (2.42) 95.28 (1.75) 84.59 (2.56) 91.01 (2.26) 73.94 (6.15) 82.89 (5.11)
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4.4. Discussion

The results clearly demonstrate the ability of the proposed ap-
proach to improve discriminative power of the extracted features.
In almost all experiments the proposed approach achieved superior
results. As validated through experiments, features extracted using
MITD result in considerably better classification performance.
However, selecting the number of projections for each of the
modes remains an important practical issue. This is a well-known
problem in feature extraction for vector objects, and it is even more
emphasized in tensor case since the number of possible combina-
tions grows exponentially with the order of a tensor. Experiments
showed that the proposed approach enables extraction of more
discriminative features even when their number is significantly in-
creased. As demonstrated, all methods except MITD achieve lower
accuracies when the number of features is increased, meaning that
their discriminative power is reduced, while the MITD-based fea-
tures lead to even better accuracy. Still, selecting the optimal num-
ber of projections remains an open problem for future research.
The drawback of the proposed method is the computationally
demanding optimization procedure that needs to be solved in each
alternating step. Previously proposed methods based on discrimi-
nant analysis (such as HODA, LTDA) solve a (generalized) eigen-
value problem in each alternation and thus are significantly
faster. However, the speed issue should not be critical, since in
the actual application projection matrices are learned only once
on a large training set, and then used repeatedly to extract features
from the test samples.

5. Conclusion

In this paper we proposed a novel approach for supervised fea-
ture extraction for tensor objects. The projection matrices are ob-
tained by maximizing an approximation of mutual information
between the extracted features and class labels. As opposed to
methods that exploit only second order statistics of the data,
more discriminative features can be obtained by using higher
order statistics. It was shown in several experiments that the
proposed approach can be used to significantly improve discrim-
inative ability of the features extracted from tensor objects. Note
that even better results can be expected with utilization of more
powerful classifiers. Since the extracted features are also in tensor
form, the overall performance could further benefit from using
classifiers designed for tensor objects. We hope that the results
presented here will provide motivation for further research in
information-theoretic approaches for discriminative analysis of
tensor objects.
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Appendix A. Estimation of MI and its gradient for scalar
variables

Here we provide expressions for estimation of mutual informa-
tion for scalar variable and its gradient using approximation as in
Leiva-Murillo and Artès-Rodrìgues (2007). Consider a continuous
(scalar) random variable f, with f = wTx, and a discrete (scalar)

random variable y with values in {1, . . . ,C}. Negentropy of a random
variable f is defined as

J ðf Þ ¼ hðfGaussÞ � hðf Þ; ðA:1Þ

where fGauss is a random variable with the same mean and variance
as f. The mutual information I(f,y) between scalar random variables
can be expressed as

Iðf ; yÞ ¼ log ð2peÞ
1
2rf

� �
� J ðf Þ

�
XC

k¼1

Pðy ¼ kÞ logðð2peÞ
1
2rf jy¼kÞ � J ðf jy ¼ kÞ

h i
; ðA:2Þ

and its gradient with respect to the transformation w as

rwIðf ; yÞ ¼ rwIðwT x; yÞ ¼
XC

k¼1

Pðy ¼ kÞrwJ ðf jy ¼ kÞ

� rwJ ðf Þ �
XC

k¼1

Pðy ¼ kÞ Cxjy¼kw
wT Cxjy¼kw

; ðA:3Þ

with Pðy ¼ kÞ being probability of class k, r standard deviation, and
C covariance matrix, all estimated using the training set. In our cal-
culations, negentropy J and its gradient are approximated using
nonpolynomial functions (see Eq. (5.48) in Hyvärinen et al.
(2001)) as follows

J ðf Þ ¼ a1 E f exp
�f 2

2

� 
	 
� 
2

þ a2 E exp
�f 2

2

� 
	 

�

ffiffiffi
1
2

r !2

; ðA:4Þ

rwJ ðf Þ ¼ rwJ ðwT xÞ ¼ 2a1E f exp �f 2

2

� �h i
E w 1� f 2

� �
exp �f 2

2

� �h i
�

�2a2 E exp �f 2

2

� �h i
�

ffiffi
1
2

q� �
E wf exp �f 2

2

� �h i ;

ðA:5Þ

with constants a1 ¼ 36=ð8
ffiffiffi
3
p
� 9Þ and a2 ¼ 24=ð16

ffiffiffi
3
p
� 27Þ. Note

that definitions of negentropy and its gradient involve mathemati-
cal expectation of a random variable that is estimated by averaging
over the training samples.
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