Pregled bibliografske jedinice broj: 631607
Sparseness Constrained Nonnegative Matrix Factorization for Unsupervised 3D Segmentation of Multichannel Images: Demonstration on Multispectral Magnetic Resonance Image of the Brain
Sparseness Constrained Nonnegative Matrix Factorization for Unsupervised 3D Segmentation of Multichannel Images: Demonstration on Multispectral Magnetic Resonance Image of the Brain // Proceedings of the SPIE on CD-ROM volume 8669 / Ourselin, Sebastian ; Haynor, R. David (ur.).
Bellingham (WA): SPIE, 2013. str. 866938-1 (poster, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
CROSBI ID: 631607 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Sparseness Constrained Nonnegative Matrix Factorization for Unsupervised 3D Segmentation of Multichannel Images: Demonstration on Multispectral Magnetic Resonance Image of the Brain
Autori
Kopriva, Ivica ; Jukić, Ante ; Chen, Xinjian
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo
Izvornik
Proceedings of the SPIE on CD-ROM volume 8669
/ Ourselin, Sebastian ; Haynor, R. David - Bellingham (WA) : SPIE, 2013, 866938-1
ISBN
978-0-8194-9451-1
Skup
Medical Imaging 2013: Image Processing
Mjesto i datum
Lake Buena Vista (FL), Sjedinjene Američke Države, 09.02.2013. - 14.02.2013
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Multispectral magnetic resonance image; brain tumor delineation; unsupervised segmentation; sparseness; nonnegative matrix factorization.
Sažetak
A method is proposed for unsupervised 3D (volume) segmentation of registered multichannel medical images. To this end, multichannel image is treated as 4D tensor represented by a multilinear mixture model, i.e. the image is modeled as weighted linear combination of 3D intensity distributions of organs (tissues) present in the image. Interpretation of this model suggests that 3D segmentation of organs (tissues) can be implemented through sparseness constrained factorization of the nonnegative matrix obtained by mode-4 unfolding of the 4D image tensor. Sparseness constraint implies that only one organ (tissue) is dominantly present at each pixel or voxel element. The method is preliminary validated, in term of Dice's coefficient, on extraction of brain tumor from synthetic multispectral magnetic resonance image obtained from the TumorSim database.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
098-0982903-2558 - Analiza višespektralih podataka (Kopriva, Ivica, MZOS ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb