Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 624971

Optimization of self-organizing polynomial neural networks


Marić, Ivan
Optimization of self-organizing polynomial neural networks // Expert systems with applications, 40 (2013), 11; 4528-4538 doi:10.1016/j.eswa.2013.01.060 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 624971 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Optimization of self-organizing polynomial neural networks

Autori
Marić, Ivan

Izvornik
Expert systems with applications (0957-4174) 40 (2013), 11; 4528-4538

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
polynomial neural networks; GMDH; Levenberg–Marquardt algorithm; Particle swarm optimization; Time series modeling

Sažetak
The main disadvantage of self-organizing polynomial neural networks (SOPNN) automatically structured and trained by the group method of data handling (GMDH) algorithm is a partial optimization of model weights as the GMDH algorithm optimizes only the weights of the topmost (output) node. In order to estimate to what extent the approximation accuracy of the obtained model can be improved the particle swarm optimization (PSO) has been used for the optimization of weights of all node-polynomials. Since the PSO is generally computationally expensive and time consuming a more efficient Levenberg–Marquardt (LM) algorithm is adapted for the optimization of the SOPNN. After it has been optimized by the LM algorithm the SOPNN outperformed the corresponding models based on artificial neural networks (ANN) and support vector method (SVM). The research is based on the meta-modeling of the thermodynamic effects in fluid flow measurements with time-constraints. The outstanding characteristics of the optimized SOPNN models are also demonstrated in learning the recurrence relations of multiple superimposed oscillations (MSO).

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo



POVEZANOST RADA


Projekti:
098-0982560-2565 - Postupci računalne inteligencije u mjernim sustavima (Marić, Ivan, MZOS ) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Ivan Marić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com dx.doi.org dx.doi.org

Citiraj ovu publikaciju:

Marić, Ivan
Optimization of self-organizing polynomial neural networks // Expert systems with applications, 40 (2013), 11; 4528-4538 doi:10.1016/j.eswa.2013.01.060 (međunarodna recenzija, članak, znanstveni)
Marić, I. (2013) Optimization of self-organizing polynomial neural networks. Expert systems with applications, 40 (11), 4528-4538 doi:10.1016/j.eswa.2013.01.060.
@article{article, author = {Mari\'{c}, Ivan}, year = {2013}, pages = {4528-4538}, DOI = {10.1016/j.eswa.2013.01.060}, keywords = {polynomial neural networks, GMDH, Levenberg–Marquardt algorithm, Particle swarm optimization, Time series modeling}, journal = {Expert systems with applications}, doi = {10.1016/j.eswa.2013.01.060}, volume = {40}, number = {11}, issn = {0957-4174}, title = {Optimization of self-organizing polynomial neural networks}, keyword = {polynomial neural networks, GMDH, Levenberg–Marquardt algorithm, Particle swarm optimization, Time series modeling} }
@article{article, author = {Mari\'{c}, Ivan}, year = {2013}, pages = {4528-4538}, DOI = {10.1016/j.eswa.2013.01.060}, keywords = {polynomial neural networks, GMDH, Levenberg–Marquardt algorithm, Particle swarm optimization, Time series modeling}, journal = {Expert systems with applications}, doi = {10.1016/j.eswa.2013.01.060}, volume = {40}, number = {11}, issn = {0957-4174}, title = {Optimization of self-organizing polynomial neural networks}, keyword = {polynomial neural networks, GMDH, Levenberg–Marquardt algorithm, Particle swarm optimization, Time series modeling} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Computer and Information Systems Abstracts
  • Research Alert
  • SCISEARCH
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font