Pregled bibliografske jedinice broj: 624971
Optimization of self-organizing polynomial neural networks
Optimization of self-organizing polynomial neural networks // Expert systems with applications, 40 (2013), 11; 4528-4538 doi:10.1016/j.eswa.2013.01.060 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 624971 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Optimization of self-organizing polynomial neural networks
Autori
Marić, Ivan
Izvornik
Expert systems with applications (0957-4174) 40
(2013), 11;
4528-4538
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
polynomial neural networks; GMDH; Levenberg–Marquardt algorithm; Particle swarm optimization; Time series modeling
Sažetak
The main disadvantage of self-organizing polynomial neural networks (SOPNN) automatically structured and trained by the group method of data handling (GMDH) algorithm is a partial optimization of model weights as the GMDH algorithm optimizes only the weights of the topmost (output) node. In order to estimate to what extent the approximation accuracy of the obtained model can be improved the particle swarm optimization (PSO) has been used for the optimization of weights of all node-polynomials. Since the PSO is generally computationally expensive and time consuming a more efficient Levenberg–Marquardt (LM) algorithm is adapted for the optimization of the SOPNN. After it has been optimized by the LM algorithm the SOPNN outperformed the corresponding models based on artificial neural networks (ANN) and support vector method (SVM). The research is based on the meta-modeling of the thermodynamic effects in fluid flow measurements with time-constraints. The outstanding characteristics of the optimized SOPNN models are also demonstrated in learning the recurrence relations of multiple superimposed oscillations (MSO).
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
098-0982560-2565 - Postupci računalne inteligencije u mjernim sustavima (Marić, Ivan, MZOS ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Profili:
Ivan Marić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Computer and Information Systems Abstracts
- Research Alert
- SCISEARCH
- Scopus