Pregled bibliografske jedinice broj: 624889
Sparse representations of signals for information recovery from incomplete data
Sparse representations of signals for information recovery from incomplete data, 2013., doktorska disertacija, Prirodoslovno-matematički fakultet - Matematički odsjek, Zagreb
CROSBI ID: 624889 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Sparse representations of signals for information recovery from incomplete data
Autori
Filipović, Marko
Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija
Fakultet
Prirodoslovno-matematički fakultet - Matematički odsjek
Mjesto
Zagreb
Datum
05.04
Godina
2013
Stranica
126
Mentor
Kopriva, Ivica ; Drmač, Zlatko
Ključne riječi
Independent component analysis ; Source separation ; Sparsity ; Sparse component analysis ; Sparse representation ; Sparse signal reconstruction ; Underdetermined linear system ; Dictionary learning ; K-SVD ; Incomplete data ; Missing data ; Image inpainting ; Salt-and-pepper noise ; Nonlinear filtering ; Feature extraction ; Linear mixture model ; Bioinformatics
Sažetak
Mathematical modeling of inverse problems in imaging, such as inpainting, deblurring and denoising, results in ill-posed, i.e. underdetermined linearsystems. Sparseness constraintis used often to regularize these problems.That is because many classes of discrete signals (e.g. naturalimages), when expressed as vectors in a high-dimensional space, are sparse in some predefined basis or a frame(fixed or learned). An efficient approach to basis / frame learning is formulated using the independent component analysis (ICA)and biologically inspired linear model of sparse coding. In the learned basis, the inverse problem of data recovery and removal of impulsive noise is reduced to solving sparseness constrained underdetermined linear system of equations. The same situation occurs in bioinformatics data analysis when novel type of linear mixture model with a reference sample is employed for feature extraction. Extracted features can be used for disease prediction and biomarker identification.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo
POVEZANOST RADA
Projekti:
MZOS-037-0372783-2750 - Spektralne dekompozicije - numericke metode i primjene (Drmač, Zlatko, MZOS ) ( CroRIS)
MZOS-098-0982903-2558 - Analiza višespektralih podataka (Kopriva, Ivica, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Institut "Ruđer Bošković", Zagreb,
Prirodoslovno-matematički fakultet, Zagreb