Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 624889

Sparse representations of signals for information recovery from incomplete data


Filipović, Marko
Sparse representations of signals for information recovery from incomplete data, 2013., doktorska disertacija, Prirodoslovno-matematički fakultet - Matematički odsjek, Zagreb


CROSBI ID: 624889 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Sparse representations of signals for information recovery from incomplete data

Autori
Filipović, Marko

Vrsta, podvrsta i kategorija rada
Ocjenski radovi, doktorska disertacija

Fakultet
Prirodoslovno-matematički fakultet - Matematički odsjek

Mjesto
Zagreb

Datum
05.04

Godina
2013

Stranica
126

Mentor
Kopriva, Ivica ; Drmač, Zlatko

Ključne riječi
Independent component analysis ; Source separation ; Sparsity ; Sparse component analysis ; Sparse representation ; Sparse signal reconstruction ; Underdetermined linear system ; Dictionary learning ; K-SVD ; Incomplete data ; Missing data ; Image inpainting ; Salt-and-pepper noise ; Nonlinear filtering ; Feature extraction ; Linear mixture model ; Bioinformatics

Sažetak
Mathematical modeling of inverse problems in imaging, such as inpainting, deblurring and denoising, results in ill-posed, i.e. underdetermined linearsystems. Sparseness constraintis used often to regularize these problems.That is because many classes of discrete signals (e.g. naturalimages), when expressed as vectors in a high-dimensional space, are sparse in some predefined basis or a frame(fixed or learned). An efficient approach to basis / frame learning is formulated using the independent component analysis (ICA)and biologically inspired linear model of sparse coding. In the learned basis, the inverse problem of data recovery and removal of impulsive noise is reduced to solving sparseness constrained underdetermined linear system of equations. The same situation occurs in bioinformatics data analysis when novel type of linear mixture model with a reference sample is employed for feature extraction. Extracted features can be used for disease prediction and biomarker identification.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Računarstvo



POVEZANOST RADA


Projekti:
MZOS-037-0372783-2750 - Spektralne dekompozicije - numericke metode i primjene (Drmač, Zlatko, MZOS ) ( CroRIS)
MZOS-098-0982903-2558 - Analiza višespektralih podataka (Kopriva, Ivica, MZOS ) ( CroRIS)

Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Institut "Ruđer Bošković", Zagreb,
Prirodoslovno-matematički fakultet, Zagreb

Profili:

Avatar Url Ivica Kopriva (mentor)

Avatar Url Zlatko Drmač (mentor)

Avatar Url Marko Filipović (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Filipović, Marko
Sparse representations of signals for information recovery from incomplete data, 2013., doktorska disertacija, Prirodoslovno-matematički fakultet - Matematički odsjek, Zagreb
Filipović, M. (2013) 'Sparse representations of signals for information recovery from incomplete data', doktorska disertacija, Prirodoslovno-matematički fakultet - Matematički odsjek, Zagreb.
@phdthesis{phdthesis, author = {Filipovi\'{c}, Marko}, year = {2013}, pages = {126}, keywords = {Independent component analysis, Source separation, Sparsity, Sparse component analysis, Sparse representation, Sparse signal reconstruction, Underdetermined linear system, Dictionary learning, K-SVD, Incomplete data, Missing data, Image inpainting, Salt-and-pepper noise, Nonlinear filtering, Feature extraction, Linear mixture model, Bioinformatics}, title = {Sparse representations of signals for information recovery from incomplete data}, keyword = {Independent component analysis, Source separation, Sparsity, Sparse component analysis, Sparse representation, Sparse signal reconstruction, Underdetermined linear system, Dictionary learning, K-SVD, Incomplete data, Missing data, Image inpainting, Salt-and-pepper noise, Nonlinear filtering, Feature extraction, Linear mixture model, Bioinformatics}, publisherplace = {Zagreb} }
@phdthesis{phdthesis, author = {Filipovi\'{c}, Marko}, year = {2013}, pages = {126}, keywords = {Independent component analysis, Source separation, Sparsity, Sparse component analysis, Sparse representation, Sparse signal reconstruction, Underdetermined linear system, Dictionary learning, K-SVD, Incomplete data, Missing data, Image inpainting, Salt-and-pepper noise, Nonlinear filtering, Feature extraction, Linear mixture model, Bioinformatics}, title = {Sparse representations of signals for information recovery from incomplete data}, keyword = {Independent component analysis, Source separation, Sparsity, Sparse component analysis, Sparse representation, Sparse signal reconstruction, Underdetermined linear system, Dictionary learning, K-SVD, Incomplete data, Missing data, Image inpainting, Salt-and-pepper noise, Nonlinear filtering, Feature extraction, Linear mixture model, Bioinformatics}, publisherplace = {Zagreb} }




Contrast
Increase Font
Decrease Font
Dyslexic Font