
An Integrated approach to the study of complexation of alkali-metal cations by calix[4]arene amide derivative

<u>G. Horvat</u>,^{1*} V. Stilinović,² L. Frkanec³, B. Kaitner,⁴ V. Tomišić^{5*}

- ¹ Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia, ghorvat@chem.pmf.hr
- ² Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia, vstilinovic@chem.pmf.hr
- ³ Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, Croatia, frkanec@irb.hr
- ⁴ Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia, kaitner@chem.pmf.hr
- ⁵ Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia, vtomisic@chem.pmf.hr

Complexation of alkali-metal cations by calix[4]arene derivative (L) in benzonitrile was studied by means of microcalorimetric titrations, molecular dynamics simulations and single-crystal X-ray diffraction. The inclusion of acetonitrile molecule in the calixarene hydrophobic *cone* was also studied using the same methods.

Structure of L.

The stability constants of the LiL⁺, NaL⁺, LiLMeCN⁺ and NaLMeCN⁺ complexes in benzonitrile were determined along with the enthalpies and entropies of complexation reactions. All investigated reactions were found to be enthalpy driven. In the case of LiL⁺ complex the inclusion of benzonitrile molecule in the calixarene *cone* was observed, and the corresponding molecular and crystal structures were determined. This finding was in accordance with the results of molecular dynamics simulation of LiL⁺ complex in benzonitrile.