ࡱ> |bjbjVV <<: !!!!!$A"A"A"$4E%LA"хX&****+++xzzzzzz$)ˋ!+++++!!**444+!&*!*x4+x44rrLG nx*fA"8/ uJd0хvfD0Pnxnx!yd ++4+++++2P+++х+++++++++++++ :COMPUTATIONAL ASPECTS OF Configuration dependent interpolation in non linear HIGHER-ORDER 2D beam finite elementS Edita Papa, Gordan Jeleni Faculty of Civil Engineering, University of Rijeka, Radmile Matej i 3, 51 000 Rijeka, Croatia,  HYPERLINK "mailto:edita.papa@gradri.hr" edita.papa@gradri.hr,  HYPERLINK "mailto:gordan.jelenic@gradri.hr" gordan.jelenic@gradri.hr Introduction In non-linear 3D beam theory with rotational degrees of freedom (Simo, 1985) configuration-dependent interpolation may be utilized to provide a result invariant to the choice of the beam reference axis (Borri and Bottasso, 1994) or invariant to a rigid-body rotation (Crisfield and Jeleni, 1999). For 2D beam elements, the latter issue vanishes, and such elements are more illustrative for the study of accuracy of the configuration-dependent interpolation in higher-order elements. Since the approximate character of the finite-element method stems from the introduction of interpolation functions for the field variables and their variations, the actual choice of the interpolation functions is of a great importance for the accuracy of the finite element method. The most commonly used standard Lagrangian interpolation procedure (with reduced integration used to eliminate the shear locking effect) is satisfactory if our attention is limited to finding the results for the field variables at nodal points in linear analysis. However, if we want to obtain the exact field distribution this kind of interpolation is unable to do so, even in linear analysis. To obtain the exact solutions in linear analysis simply using the right interpolation function and without applying reduced integration, a different kind of interpolation, called the linked interpolation is needed, in which the unknown displacement function do not depend only on the nodal displacements, but also on the nodal rotations (Jeleni and Papa, 2011). Marco Borri and Carlo Bottasso have developed a so-called fixed-pole formulation which effectively generalizes the idea of linked interpolation to non-linear two-noded beam elements. This interpolation is called the helicoidal interpolation by the authors and is based on the fact that the tangent to the beam centroidal axis and the normal of the cross section follow the same transformation rule (Borri and Bottasso, 1994). This kind of interpolation can also be obtained starting from the condition of constant Reissners strain measures (Reissner, 1972). Reissners beam theory In this paper we analyze geometrically exact Reissners beam theory (Reissner, 1972). In this beam theory, normal strain  EMBED Equation.3 , shear strain  EMBED Equation.3  and the change of the sectional orientation along the length of the beam  EMBED Equation.3  are given by the following expressions:  EMBED Equation.3  EMBED Equation.3  EMBED Equation.3  where  EMBED Equation.3  is the slope of the beam in the initial configuration,  EMBED Equation.3  is the function describing the slope of the cross sections in the deformed configuration as a function of the arc-length coordinate  EMBED Equation.3 ,  EMBED Equation.3 and  EMBED Equation.3  are the horizontal and vertical displacements that can be written in terms of the components of the initial and the deformed position vectors  EMBED Equation.3 ,  EMBED Equation.3 ,  EMBED Equation.3  and  EMBED Equation.3 , respectively, and a dash denotes a differentiation with respect to the arc-length coordinate  EMBED Equation.3  (see Figure 1).  Figure  SEQ Figure \* ARABIC 1 Kinematics of the problem. Equilibrium of a beam of length L follows from minimization of the difference between the strain energy  EMBED Equation.3  and the work of the applied loading  EMBED Equation.3 ,  EMBED Equation.3 , where  EMBED Equation.3  EMBED Equation.3 and N,T and M are the normal stress, shear stress and stress-couple resultants,  EMBED Equation.3  and  EMBED Equation.3  are distributed horizontal, vertical and moment loading respectively, while p is a vector of nodal displacements and rotations and S is a vector of corresponding nodal loading. Taking (1)-(3) and writing minimization of the energy in a matrix form becomes  EMBED Equation.3   where  EMBED Equation.3  is the rotation matrix of a cross-section given by  EMBED Equation.3 After introducing interpolation  EMBED Equation.3 , where  EMBED Equation.3  is a vector of the unknown displacement and rotation functions  EMBED Equation.3  and  EMBED Equation.3  is the interpolation matrix, expression (6) becomes  EMBED Equation.3  where  EMBED Equation.3  is a matrix of differential operators given by  EMBED Equation.3 The first term within brackets in (8) is the internal force vector, while the term within the parentheses is the external force vector. Depending on the interpolation  EMBED Equation.3  the results will be more or less accurate. Standard finite element procedure employs Lagrangian polynomials as interpolation functions (Simo and Vu-Quoc, 1986). This interpolation implies independence between the displacements and the rotation of the cross section which is physically incorrect. Also, this kind of independent interpolation results in shear locking effect for certain aspect ratios when full integration is used. Additionally, the choice of the beam reference axis is an open question for the cases of more complex non-homogeneous or anisotropic beams, or beams with twisted or curved geometry. In these situations the axis of geometric, mass or shear centers of the cross-section do not necessarily coincide and choosing one of them for the beam reference axis instead of another may lead to different finite-element solutions. To overcome these problems, it makes sense to re-consider the choice of the interpolation functions that provide the actual interdependence between the displacement and the rotation fields. In linear analysis, such interpolation is called the linked interpolation, while in the non-linear analysis we call it the configuration-dependent interpolation. Summary of the configuration-dependent interpolation (Borri and Bottasso, 1994) As stated above, interpolation that provides the interdependence between the displacement and the rotation fields in non-linear analysis is called the configuration-dependent interpolation. In this section a brief overview of the known studies will be given. Borri and Bottaso (Borri and Bottasso, 1994) introduce the so-called fixed pole interpolation in which the equilibrium of cross-sectional moments is stated with respect to a point which the authors call the fixed pole. This point has all the properties of the origin of an inertial reference frame. The fixed-pole strain measures are obtained by statically reducing all stress and stress-couple resultants to the fixed pole. Assuming a constant curvature in the deformed state and considering that the tangent to the beam centroidal axis and the normal of the cross-section follow the same transformation rule, for a two-noded element the following interpolation is obtained:  EMBED Equation.3  EMBED Equation.3  EMBED Equation.3  where  EMBED Equation.3   EMBED Equation.3  while  EMBED Equation.3  are the Lagrangian polynomials for a two noded element:  EMBED Equation.3 The same interpolation as in (10)-(12) can be obtained by assuming constant strain measures  EMBED Equation.3  in (1)-(3). This interpolation is non-linear in the field variables (configuration-dependent) and has the following limiting value in the case of the non-linear analysis becoming linear:  EMBED Equation.3  This limiting case is the same as the linked interpolation in (Jeleni and Papa, 2011) known to be able of reproducing the exact solution of a linear problem thus eliminating the shear-locking completely. The latter, however, may be written for an element with arbitrary number of nodes:  EMBED Equation.3  Configuration-dependent higher-order interpolation In order to generalize the non-linear Borri-Bottasso result for two-noded elements to higher-order elements we may take the strain measures to be linearly distributed rather than constant, which however complicates the procedure considerably. This is so because the interpolation turns out to be related with Fresnels integrals, for which analytical solutions are not available (Jeleni and Papa, 2009). Alternatively, we may attempt to generalize the linear higher-order result obtained by Jeleni and Papa to non-linear analysis. The simplest idea of how to perform this generalization and come up with a configuration-dependent interpolation is to substitute the initial positions of the nodal points in the linked interpolation with their current positions:  EMBED Equation.3 As it can be seen, the unknown position vectors in the deformed state depend on the rotations thus making this interpolation non-linear in the unknown functions, i.e. configuration-dependent. Numerical examples In this section two numerical examples are given. Both of them are calculated using the standard Lagrangian interpolation and the linked interpolation in non-linear analysis for reduced integration as well as the full integration. Mattiasson cantilever beam  Figure  SEQ Figure \* ARABIC 2 Mattiasson cantilever beam problem. Mattiasson cantilever beam (Mattiasson, 1981) with a transversal point load (Figure 2) is a large deflection problem most commonly used in testing the behavior of geometrically nonlinear beam finite element analysis. The value of Youngs modulus is E=20000, the area of the cross-section A=0.02, the shear area of the cross-section As=A/1.2, the inertia of the cross-section I=0.00025, the length of the beam L=1, shear modulus is given with respect to Youngs modulus G=10000 E and the applied loading P=1. The results are given in Tables 1 and 2 for the reduced and the full integration. Ten linear elements were used to solve this problem and the results are compared with those from (Mattiasson, 1981). Standard interpolationLinked interpolationResults from (Mattiasson, 1981)u0,00246620,00246620,00265w0,06622690,06622690,066360,0996590,0996590,09964Table  SEQ Tabela \* ARABIC 1 Reduced integration solutions. Standard interpolationLinked interpolationResults from (Mattiasson, 1981)u8,04E-90,00254690,00265w0,000119780,06590630,066360,000179670,09907630,09964Table  SEQ Tabela \* ARABIC 2 Full integration solutions. As it can be seen from the results shown in the tables above, reduced integration gives the same results for both the standard (Lagrangian) and the linked interpolation. However, looking at the results of the full integration it can be seen that the linked interpolation gives much better results than the standard interpolation. Therefore we can conclude that the linked interpolation is free from the locking effect even when it is used in non-linear analysis. Hinged right-angle frame under fixed point load  Figure  SEQ Figure \* ARABIC 3 Hinged right-angle frame under point load. This problem and its results are given in (Simo and Vu-Quoc, 1986). The data are: length L=120, inertia I=2, area of the cross section A=6, Young s modulus E=7.2E06, Poisson s ratio =0.3 and the vertical point load P=15000. This problem has been solved using ten linear and ten quadratic elements (five per leg) and the results are given in Tables 3 and 4. Results in (Simo and Vu-Quoc, 1986) are given for ten quadratic elements. Standard interpolationLinked interpolationu6,460736,46073w22,486322,4863Table  SEQ Tabela \* ARABIC 3 Reduced integration solutions for the mesh consisting of ten linear elements. Standard interpolationLinked interpolationu0,00326330,421699w0,2281254,56821Table  SEQ Tabela \* ARABIC 4 Full integration solutions for the mesh consisting of ten linear elements. Taking quadratic elements to solve the same problem increases the accuracy of the solution. Those results are shown in Tables 5 and 6. Standard interpolationLinked interpolationResults from the literatureu8,016388,016388,235w25,862525,862525,8823Table  SEQ Tabela \* ARABIC 5 Reduced integration solutions for the mesh of ten quadratic elements. Standard interpolationLinked interpolationu3,345,42416w14,364319,4069Table  SEQ Tabela \* ARABIC 6 Full integration solutions for the mesh of ten quadratic elements. Concluding remarks In this paper the theory of higher-order configuration-dependent interpolation (i.e. nonlinear in the field variables) has been introduced. Linked interpolation that gives exact solutions in linear analysis has been used to calculate the numerical examples in nonlinear analysis. It is shown that, in the case of reduced integration the results are identical to the ones obtained by using the 2L   2 < t   - . 0 ߿{ll[lPh?8Jh9mH sH !h?8JhY0JB*mH phsH jh?8JhYUmH sH h8mH sH h?8Jhtk"mH sH h?8Jh9mH sH h?8Jh)mH sH h?8JhYmH sH h?8Jh %5CJaJmH sH h?8JhlJ75CJaJmH sH h?8JhS=5CJaJmH sH h?8JhPP5CJaJmH sH h?8JhY5CJaJmH sH  y z { I`$ & F%$Ifa$gdB$$If`a$gdB`gd)gd.pgdx%%gdlJ7gdvgd9gdBgd9gdtk"gdFgdai0 1 ^ _ w x y {   N S m n & l   j n ɾ}r}r}h?8JhemH sH h?8JhSCmH sH  h?8JhSC h?8Jhx h?8Jht.ehx h?8JhY h?8JhS=hyAh?8Jh5AmH sH h?8Jh9mH sH h?8Jh9mH sH !h?8Jh)0JB*mH phsH h?8Jh)mH sH jh?8Jh)UmH sH ,GLvGsux,@0 $&67FGH|qh?8JhomH sH h8mH sH h?8Jh!LmH sH hxh?8Jhf6mH sH h?8JhfmH sH h?8JhA%4mH sH h?8Jhb mH sH hxmH sH h?8Jhx%6mH sH h?8JhlJ7mH sH h?8Jhx%mH sH h?8JhSCmH sH h?8JhemH sH +HI_`Ͽό|iV|G<h?8Jh)mH sH jh?8Jh)UmH sH $h?8JhPJaJmH nH sH tH $h?8Jh)PJaJmH nH sH tH h@PJaJmH nH sH tH $h?8Jh!LPJaJmH nH sH tH hxmH sH h8mH sH hxPJaJmH nH sH tH hrEPJaJmH nH sH tH h}PJaJmH nH sH tH h?8Jhw`mH sH h?8Jh!LmH sH h?8JhPmH sH _`atuvwɶɘqɶɘ[JɣBh5fmH sH !jh?8Jh)EHUmH sH +j|lUR h?8Jh)CJUVaJmH sH !jh?8Jh)EHUmH sH +jdlUR h?8Jh)CJUVaJmH sH h?8Jh)mH sH $h?8Jh)PJaJmH nH sH tH $h?8Jh!LPJaJmH nH sH tH jh?8Jh)UmH sH !jh?8Jh)EHUmH sH +jQlUR h?8Jh)CJUVaJmH sH ˺夓}laYNCh?8Jh)mH sH h?8Jhb mH sH hrHmH sH hBhBymH sH !j hBhTEHUmH sH +j@S hBhTCJUVaJmH sH !j\ hBhbxEHUmH sH +jkUR hBhbxCJUVaJmH sH !jhBhbxEHUmH sH 3jW/M hBhbxCJUVaJmH nHsH tHhBhbxmH sH jhBhbxUmH sH 7Tkd $$Ifl0Y# t644 laytB$ & F%$Ifa$gdB$$If`a$gdBTkd$$Ifl0Y# t644 laytB90`gdrTkd$$Ifl0Y# t644 laytB$If^`gdB $If`gdyATkdH$$Ifl0Y# t644 laytBJK^_`aϾ娗veO>!jh?8JhLEHUmH sH +j IS h?8JhLCJUVaJmH sH !jh?8JhLEHUmH sH +jIS h?8JhLCJUVaJmH sH h?8Jhb mH sH !jh?8Jh)EHUmH sH +jlUR h?8Jh)CJUVaJmH sH !jh?8Jh)EHUmH sH +jlUR h?8Jh)CJUVaJmH sH h?8Jh)mH sH jh?8Jh)UmH sH ./012|Ͼ嫜u_N!jrh?8JhEHUmH sH +jnUR h?8JhCJUVaJmH sH !j6h?8JhEHUmH sH +jmUR h?8JhCJUVaJmH sH jh?8JhUmH sH h?8JhmH sH hLmH sH !jh?8JhEHUmH sH +jmUR h?8JhCJUVaJmH sH h?8Jh)mH sH jh?8Jh)UmH sH  "#$%4ɾɾɌɾveɌ]QMBhohoCJaJhoj%hoGUmH sH hImH sH !j##h?8JhEHUmH sH +jsnUR h?8JhCJUVaJmH sH h?8Jhb mH sH !j h?8JhEHUmH sH +jSnUR h?8JhCJUVaJmH sH h?8JhmH sH jh?8JhUmH sH !jh?8JhEHUmH sH +j;nUR h?8JhCJUVaJmH sH rb$ & F%$Ifa$gd0Tkd=$$Ifl0' t$644 layt0$ & F%$If]a$gd0 $If`gd0gdo $`gdo`gdr 'TUhijkl帰oaVKChMmH sH hkyhMmH sH hkyhImH sH hkyOJQJ^JmH sH !jC4hkyhkyEHUmH sH +jrS h?8JhkyCJUVaJmH sH h?8JhkymH sH jh?8JhkyUmH sH hNmH sH hImH sH h?8Jho5CJaJmH sH hoCJaJh/vCJaJmHnHuhohoCJaJjhohoCJUaJɶpeO>pepe!j:h0huEHUmH sH +j S h0huCJUVaJmH sH h0humH sH jh0huUmH sH hwmH sH h mH sH !j78hkyhVNREHUmH sH +j٪S h?8JhVNRCJUVaJmH sH h?8JhkymH sH hkymH sH jh?8JhkyUmH sH !j=6hkyhkyEHUmH sH +jeS h?8JhkyCJUVaJmH sH    KMNabcdij}ɾwlVEwwl!jAh;d@hI\EHUmH sH +jS h?8JhI\CJUVaJmH sH h?8Jh;d@mH sH jh?8Jh;d@UmH sH h;d@mH sH hVNRmH sH h h 6mH sH hhmH sH h6mH sH h mH sH h0humH sH jh0huUmH sH !j=h0hxy@EHUmH sH +j@S h0hxy@CJUVaJmH sH }}}m$ & F%$Ifa$gd0$$If`a$gd0$`a$gdTlU1`gdrTkd$A$$Ifl0' t$644 layt0}~2Lhzk`J9!jEh:EhoGEHUmH sH +j S h0hoGCJUVaJmH sH h0hTmH sH jh0hTUmH sH h0hmH sH hwmH sH hmH sH h rmH sH hTmH sH hxy@mH sH hxy@h:E5mH sH h:EmH sH hmmH sH jh?8Jh;d@UmH sH !jCh;d@hI\EHUmH sH +jS h?8JhI\CJUVaJmH sH ʻʁyj_I8j!jpMh0h}EHUmH sH +j= S h0h}CJUVaJmH sH h0hSmH sH jh0hSUmH sH h*mH sH hoGmH sH !jvKh`h`EHUmH sH +j=S h?8Jh`CJUVaJmH sH h?8Jh`mH sH jh?8Jh`UmH sH h`mH sH hmH sH h0hmH sH h0hTmH sH jh0hTUmH sH  $ & F%$Ifa$gd0 $If`gd0`gdrTkdK$$Ifl0#n t644 layt0    "#$ & F%$Ifa$gdS8:$$If`a$gdS8:`gdrTkdP$$Ifl0/   t644 layt0 *+>?@ABIJ]^_`eíݔ~mݔeeVKh?8Jhxy@mH sH jh?8Jhxy@UmH sH hxy@mH sH !jLShxy@hxy@EHUmH sH +jS h?8Jhxy@CJUVaJmH sH h`mH sH !j Qhxy@hxy@EHUmH sH +jS h?8Jhxy@CJUVaJmH sH h?8Jh`mH sH jh?8Jh`UmH sH h^g~mH sH h7|mH sH h@mH sH h0hSmH sH   xph`QF0+j S hS8:h*CJUVaJmH sH hS8:h~mH sH jhS8:h~UmH sH h~mH sH h rmH sH h}mH sH !jWh^g~h^g~EHUmH sH +j6S h?8Jh^g~CJUVaJmH sH h?8Jh^g~mH sH jh?8Jh^g~UmH sH h^g~mH sH hxy@mH sH jh?8Jhxy@UmH sH !jEUhxy@hxy@EHUmH sH +jOS h?8Jhxy@CJUVaJmH sH  !$&,-@ABCOjtuĵ{laK:la!jx`h0h*EHUmH sH +j* S h0h*CJUVaJmH sH h0hSmH sH jh0hSUmH sH h*mH sH !jb^hShSEHUmH sH +jS h?8JhSCJUVaJmH sH h?8JhSmH sH jh?8JhSUmH sH hSmH sH h~mH sH hS8:h~mH sH jhS8:h~UmH sH !jYh*h*EHUmH sH #$%&t$ & F%$Ifa$gd0 $If`gd0`gdrTkd]$$Ifl0#S t644 laytS8:x#N$R%''''((u$ & F%$Ifa$gdB$$If`a$gdBgdgn$a$gd\o>`gdrTkd,d$$Ifl0  f t644 layt0 '456IJKLMPwxV \ u !####ưїwogw_g_Wh&mH sH hHnmH sH homH sH h[?mH sH h ]mH sH h9*mH sH hCmH sH hWmH sH hmH sH !jdh^g~hEHUmH sH +j6S h?8JhCJUVaJmH sH h?8JhmH sH jh?8JhUmH sH h xmH sH hVNRmH sH h*mH sH he|mH sH "###$ $3$=$M$N$$%%,%P%d%%%%}&&&'/'h''''''''''''' (貪زز؞~odhBhmH sH jhBhUmH sH hrHmH sH h~mH sH hzmH sH hhFmH sH huImH sH hxha-mH sH hNmH sH h\o>mH sH hhCmH sH hh&mH sH h&mH sH hmH sH hgnmH sH hCmH sH hHnmH sH $ (((((('((()(*(-(.(A(B(C(D(G(H(J(K(źźźu[JuB:BhZ imH sH h@mH sH !jmhBhrEHUmH sH 3jS hBhrCJUVaJmH nHsH tHhBh_{fmH sH jhBh_{fUmH sH !jihBhEHUmH sH 3jȏS hBhCJUVaJmH nHsH tHhBhmH sH jhBhUmH sH !jfhBhEHUmH sH 3jS hBhCJUVaJmH nHsH tH((+(,(-(E(F(7Tkd~m$$Ifl0#S t644 laytB$ & F%$Ifa$gdB$$If`a$gdBTkdi$$Ifl0#S t644 laytBF(G(H(I(J(((($ & F%$Ifa$gdB$$If`a$gdB`gdrTkdr$$Ifl0#S t644 laytBK(O(P(Q(d(e(f(g(h(i(|(}(~((((((ּwf^ODh?8JhzmH sH jh?8JhzUmH sH hrmH sH !jvh@h@EHUmH sH 3j,S h?8Jh@CJUVaJmH nHsH tHh?8Jh@mH sH jh?8Jh@UmH sH !j8shuIh@EHUmH sH 3jS h?8Jh@CJUVaJmH nHsH tHh?8JhuImH sH jh?8JhuIUmH sH h@mH sH hKmH sH ((((((((((((((()) ) ))))Žq`XPH@H8hhFmH sH hmH sH hyjmH sH hmH sH hx_mH sH !j{{hBh@EHUmH sH 3jS hBh@CJUVaJmH nHsH tHhBh@mH sH jhBh@UmH sH hCmH sH hrmH sH h@mH sH hzmH sH jh?8JhzUmH sH !jgyhzh@EHUmH sH 3j”S h?8Jh@CJUVaJmH nHsH tH((>*@*B*r*t*$ & F%$Ifa$gd0$$If`a$gd0`gdrTkd-~$$Ifl0   t644 laytB)))))*)2)3)<)L)M)`)a)b)c)d)o)p)))))))))<*>*B*ɾuiuiuuaYhZ imH sH hrmH sH h?8JhNZ6mH sH h?8JhNZmH sH h?8JhrmH sH h`mH sH !j~hh!KEHUmH sH 3jKS h?8Jh!KCJUVaJmH nHsH tHh?8JhmH sH jh?8JhUmH sH hI=9mH sH hmH sH hhFmH sH hyjmH sH h@mH sH B*D*j*l*n*p*v*x*z*********&+ ,\,],^,_,r,˺岪zrj[PhTIhL$mH sH jhTIhL$UmH sH hL$mH sH h7N.mH sH hmH sH hxmH sH h$mH sH hI=9mH sH hmH sH h^mH sH hK>mH sH hZ imH sH !jh_4hAEHUmH sH 3j S h0hACJUVaJmH nHsH tHh0hZ imH sH jh0hZ iUmH sH t*v*x*z*],^,v,w,|l$ & F%$Ifa$gdTI$$If`a$gdTI `gdL$`gd`gdrTkd…$$Ifl0u#e t644 layt0r,s,t,u,x,y,,,,,,q-r--N../////// 000 0!050ź~v~nf~^SSHSSSh?8JhdomH sH h?8Jhz@mH sH hX$mH sH hKmH sH h@0]mH sH h*XmH sH h?8Jh^mH sH h?8JhNZmH sH h\o>mH sH h?8Jh1mH sH h?8JhRjmH sH hL$mH sH hTIhL$mH sH jhTIhL$UmH sH !j(hTIhL$EHUmH sH 3j S hTIhL$CJUVaJmH nHsH tHw,x,y,,000y$ & F%$Ifa$gd $$If`a$gdBgd $a$gd\o>gdRjTkd$$Ifl0u#e t644 laytTI50i00000000000000111111H11111111zrzjbZRjRh>&=mH sH h*'mH sH h'|mH sH hL$mH sH h! mH sH hzPmH sH hI7mH sH h?8Jh:mH sH !jThwhyAEHUmH sH 3jS hBhyACJUVaJmH nHsH tHhBh*XmH sH jhBh*XUmH sH h9YmH sH h?8Jh9YmH sH hxmH sH h?8JhNZmH sH 0011|222225555q"$$Ifa$gd+gdX$gdEC*$gdEC*gd2.gd*'gd>&=gd*'gdx%Ukd$$Ifl0 D/ t44 layt2. 112222{2|222222222222222 3+3633333344#4$4N4O4V4ʾ~vnvvfvf^fvf^f^fhqEmH sH h}-mH sH hUmH sH hrmH sH h-h-mH sH hEC*hEC*56h/vCJaJmHnHujh@hEC*CJUaJh@hEC*CJaJhEC*jTh-UmH sH h2.h2.mH sH h*'mH sH h>&=h>&=mH sH h*]mH sH h>&=mH sH he%mH sH $V4W4x4}4~4444444444444455 555,5-5a555555555555555彵yqfqfqhhehkYZCJaJhkYZCJaJ'hhehkYZ5CJOJQJaJmH sH h LSmH sH hX$mH sH hTmH sH h'[mH sH hL$mH sH hUmH sH hw mH sH h-mH sH h,mH sH h$mH sH hWmH sH h mH sH h}-mH sH h}-h}-mH sH '555551kd$$IfTFm\ p t0s644 laytT$$If`a$gd*m]$$If`a$gd+5555555566 6"6$6&6(6:6<6N6P6^6`6b6d6f6v6x66666666666666ļļļ铈yylyhhTh/vCJaJmHnHujh@hTCJUaJh@hTCJaJh@hCJaJ%hkYZ5CJOJQJ^JaJmH sH h !hkYZCJaJhkYZCJaJ'hhehkYZ5CJOJQJaJmH sH !hkYZ5CJOJQJaJmH sH hkYZhhehkYZCJaJh*m]CJaJ&5556"6$$If`a$gd${$If`{a$gd${$If`{a$gdkYZ"$$Ifa$gd+"6$6(6<6P6UE5%${$If`{a$gd+${$If`{a$gdkYZ"$$Ifa$gd+kd$$IfTF\ p t0s644 laytTP6`6b6f6x6G7'${$If`{a$gdkYZ"$$Ifa$gd+kd$$IfTF\ p t0s644 laytT$$If`a$gdx666675-$a$gdX$kd$$IfTF\ p t0s644 laytT$$$If`a$gd${$If`{a$gd+6777 7L7N7v7x777777777777777 88 8"80828486888L8N8`8b8p8r8t8n%h;t5CJOJQJ^JaJmH sH h;th !h;tCJaJh;tCJaJ'hheh;t5CJOJQJaJmH sH !h;t5CJOJQJaJmH sH hhhehCJaJhCJaJ'hheh5CJOJQJaJmH sH  h2.h2. h*'56hThT56&77 7N7x77$$If`a$gd0$$If`a$gd+"$$Ifa$gd+gd2.77777UE5%${$If`{a$gd;t${$If`{a$gd+"$$Ifa$gd+kdN$$IfTFm\ p t0s644 laytT77778E5%${$If`{a$gd;t"$$Ifa$gd+kd $$IfTF\ p t0s644 laytT$$If`a$gd8"82848887'"$$Ifa$gd+kd$$IfTF\ p t0s644 laytT$$If`a$gd${$If`{a$gd;t88N8b8r8t885-$a$gdX$kd$$IfTF\ p t0s644 laytT$$$If`a$gd${$If`{a$gd;tt8~8888888888: ;;;;D;E;F;G;v;w;x;;;zrj^ZO@jh@hJlCJUaJh@hJlCJaJhJljhZmUmH sH hEC*mH sH hcjmH sH h)mH sH h_)mH sH h_)6mH sH h26mH sH h2h26mH sH h2mH sH hmH sH h;tmH sH hKhK56hKh/vCJaJmHnHujh@hKCJUaJh@hKCJaJh@hCJaJ8F;v;x;;u>v>w>>>$$If`a$gd+"$$Ifa$gd+gdJlgdJl$^`gdwCgdEC*gdx% ;;;;;;;;;;;;;;<<.<<<8=J=f=====)>*>t>u>v>w>>ļ~~vbZhu.CJaJ'hhehu.5CJOJQJaJmH sH hX$mH sH hu.mH sH h!mH sH h-(mH sH hJlOJQJ^JmH sH hJlmH sH hFmH sH h_[mH sH hdymH sH  hEC*56hJlhJl56hJlh/vCJaJmHnHujh@hJlCJUaJh@hJlCJaJ >>>>>>>>>>>>>>>>>>>>>>>>>>?$?.?7?8?9?:?P?Q?e?f?g?h?i?r?s?{?|?鮟}v}o h-(56 h4456 h!56h.h.56h.h/vCJaJmHnHujh@h.CJUaJh@h.CJaJh !hu.CJaJ'hhehu.5CJOJQJaJmH sH !hu.5CJOJQJaJmH sH hu.hu.CJaJhhehu.CJaJ+>>>>>hXHH${$If`{a$gd+"$$Ifa$gd+kdң$$IfTFmF J t0 6    44 laytu.T>>>>>hXHH${$If`{a$gd+"$$Ifa$gd+kd$$IfTFF J t0 6    44 laytu.T>>9?:?Q?f?jbR@@$$If`a$gd+"$$Ifa$gd+$a$gdX$kdJ$$IfTFF J t0 6    44 laytu.Tf?g?i?s?|?hXHH${$If`{a$gd+"$$Ifa$gd+kd$$IfTFmF J t0 6    44 laytu.T|?}????hXHH${$If`{a$gd+"$$Ifa$gd+kd$$IfTFF J t0 6    44 laytu.T|?}?~??????????????????????q@@@@}v}og_gK'hheh9O5CJOJQJaJmH sH hPmH sH h9OmH sH  h"$56 h4456h.h!56 h!56h!h/vCJaJmHnHujh@h!CJUaJh@h!CJaJh@h44CJaJh !hu.CJaJhu.CJaJ'hhehu.5CJOJQJaJmH sH !hu.5CJOJQJaJmH sH hu.???@@@@jb]]M;$$If`a$gd+"$$Ifa$gd+gd9O$a$gdX$kdz$$IfTFF J t0 6    44 laytu.T@@@@@@@@@@@@@@@@@@@@@@@AAA A A A!A"A#A$AFANAiAjAkA馗yyr h9Oh9O h9O56h9Oh9O56h/vCJaJmHnHujh@h9OCJUaJh@h9OCJaJhqi~CJaJh !h9OCJaJ'hheh9O5CJOJQJaJmH sH !h9O5CJOJQJaJmH sH h9Ohheh9OCJaJh9OCJaJ%@@@@1kd2$$IfTFm\ Jd t0s644 layt+T$$If`a$gd: $$If`a$gd+@@@@@$$If`a$gd+${$If`{a$gd+"$$Ifa$gd+@@@@@UE55${$If`{a$gd+"$$Ifa$gd+kd$$IfTF\ Jd t0s644 layt+T@AAjAkAlAGB=-"$$Ifa$gd+gd9Ogd9Okd֩$$IfTF\ Jd t0s644 layt+T$$If`a$gd+kAlAAAAAAAAAAAAAAAAAAAAAAAAAAABBB B3BABԭ|qf[h?8JhpmH sH h?8JhvmH sH h9Oh9OmH sH  h9O56h9Oh9O56h9Oh/vCJaJmHnHujh@h9OCJUaJh@h9OCJaJh !hu.CJaJ!hu.5CJOJQJaJmH sH hu.hhehu.CJaJhu.CJaJ'hhehu.5CJOJQJaJmH sH !lAAAAAAAVF66${$If`{a$gd+"$$Ifa$gd+kd$$IfTFmF J t0 6    44 laytu.T$$If`a$gd+AAAAAhXHH${$If`{a$gd+"$$Ifa$gd+kd`$$IfTFF J t0 6    44 laytu.TAA B3Bje`[V5! 2( Px 4 #\'*.25@9gdOgdOgdx%gdvgd9Okd$$IfTFF J t0 6    44 laytu.TABOBjBBBBBC C[C\CCCCCHK/0CPvwX[cdextmfm h?8Jht.e h?8Jhq 'hU h?8Jh+ h?8JhoGvh?8JhOBmH sH 0hlJ7hOCJOJQJ^JaJmH nHsH tHhlJ7hOmH sH h?8JhOmH sH hzLmH sH h~mH sH hL$mH sH UhPmH sH h?8JhpmH sH h?8JhVPmH sH h mH sH (standard Lagrangian interpolation. However, when using full integration the linked interpolation is significantly less sensitive to shear locking. Acknowledgements The results shown here were obtained within the scientific project No 114-0000000-3025: Improved accuracy in non-linear beam elements with finite 3D rotations financially supported by the Ministry of Science, Education and Sports of the Republic of Croatia. References J.C. Simo. A finite strain beam formulation. The three-dimensional dynamic problem, Part I. Computer Methods in Applied Mechanics and Engineering, 49: 55-70, 1985. M. Borri, C. Bottasso. An intrinsic beam model based on a helicoidal approximation --- Part I: Formulation. International Journal for Numerical Methods in Engineering, 37: 2267-2289, 1994. M.A. Crisfield, G. Jeleni. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proceedings of the Royal Society London Series A, 455: 1125-1147, 1999. G. Jeleni, E. Papa. Exact solution of 3D Timoshenko beam problem using linked interpolation of arbitrary order. Arch Appl Mech (2011) 81: 171-183. E. Reissner. On one-dimensional large-displacement finite-strain beam theory. Journal of App. Math. And Phys (ZAMP). 23: 795-804, 1972. Xxpprtxz~ & Fh^h`gddy & Fh^h`gdL$ & Fh^h`gdt.e & Fh^h`gdoGvgd4reivwxpr nprtvz|¾hTh4hzih)+jh)+U h?8JhlJ7h (hlJ7h5CJOJQJ^JaJnHtHh5hlJ7hUhE`h hL$H*hL$UhoGvh h?8JhoGv h?8Jh?8J h?8Jhq ' h?8Jht.e'G. Jeleni, E. Papa. Configuration-dependent interpolation in non-linear 2D beam finite elements. Proceedings of the 6th International Congress of Croatian Society of Mechanics, 2009. K. Mattiasson. Numerical results from large deflection beam and frame problems analysed by means of elliptic integrals. Int.J.Num.Meth.Engng., 16, 145-153, 1981. J.C. Simo, L. Vu-Quoc. A three-dimensional finite-strain rod model. Part II: Computational aspects. Computer methods in applied mechanics and engineering, 58 (1986) 79-116 J.C. Simo, L. Vu-Quoc. On the dynamics of flexible beams under large overall motions  the plane case: Part I and Part II. ASME Journal of Applied Mechanics, 53: 849-854, 1986.      & Fh^h`gdoGv:&P 1h/R :pm. A!n"n#$n% = 0&P 1h/R :pm. A!"# $n% 7A 0&P 1h/R :pyA. A!"# $n% P 7= 0&P 1h/R :pm. A!"# $n% 7A 0&P 1h/R :pw. A!"# $n% P 7= 0&P 1h/R :pm. A!"# $n% 7A 0&P 1h/R :p~. A!"# $n% P 7= 0&P 1h/R :p~. A!"# $n% 7A 0&P 1h/R :p~. A!"# $n% P 7= 0&P 1h/R :p~. A!"# $n% 7= 0&P 1h/R :pm. A!"# $n% 7= 0&P 1h/R :pm. A!"# $n% 7A 0&P 1h/R :pZ i. A!"# $n% P 7= 0&P 1h/R :pm. A!"# $n% 7A 0&P 1h/R :pL$. A!"# $n% P 7= 0&P 1h/R :pL$. A!"# $n% 7A 0&P 1h/R :pL$. A!"# $n% P 7A 0&P 1h/R :p@. A!"# $n% P 7Dd HIb  c $A? ?3"`?2GX-挓:I]_#Dn`!X-挓:I]_:@`!xcdd`` $X bbd12,(ㆫaJ`t`3H1g`Yj@hPs 5< %! `35)d`A 27)?a(B ?'i,@պ@@ڈQd Cj%v Hj;wLLJ% :@~,L05Dd HJb  c $A? ?3"`?2F)5ܓd>"An`!)5ܓd>:@x=Oja])z\%ABBh)E$\:UJW,-!#I9yؿٝ]AH(@K"1&E֤c^^Ґx%]5ȍY\E15N9'F>MU ofZCmL7/$Ud=zS%!qnߋ}3OzCwp!.Iω7\Dd IHb  c $A? ?3"`?2D8wBeM{:~kN{=vR*N{-Hq]J{a. ܐbr<"Hda%'o+̚ řy0Rτ*S$Sz>L'3L˲ 5p͇Hp(*_KċʟɆOG2+ 72 sM%_+CUUbs7 3@&sAKY.pI N2V.+KRsnaPdh,Āf`{_C^$$If!vh55#v#v:V l t655ytB@Dd THIb  c $A? ?3"`?2Y:cf n`!^Y:c* 1XJ,xTOAf]h*5C@@¯/&j eI ibHGOĄĻGM<LD<(x2Rߛ첬lo^|y Se𓣑K ljr! YŦծ~\a@7ƽ zLj+eV{4 l~9.?w68nhTolY, Cᥣ_|w33gk%ͼxEwZル7wZ7l̛{{8fޤsS=0&*'lmx~|zdN~%}uJӃ<œqhǏAG)ot?u/;/ߪ}3x<[T>47zN:崪nd ]or= _ '}Nq5bfD̦3zͦrFCQT&<0 -WUע7;sh2a^$$If!vh55#v#v:V l t655ytB^$$If!vh55#v#v:V l t655  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz|}~Root Entry F0fTData {ԬWordDocumentObjectPool@Mf0f_1381330001FMfMfOle CompObjfObjInfo !&+05:?BEHKNQTW\afilopsvwx{~ FMicrosoft Equation 3.0 DS Equation Equation.39q 4U  FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native )_1381330020 FMfMfOle CompObj fObjInfo Equation Native  )_1381330044FMfMfOle   8D  FMicrosoft Equation 3.0 DS Equation Equation.39q \C CompObj fObjInfo Equation Native )_1302540119FMfMfOle CompObjfObjInfoEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39quP!|9 =cos+u'()cos+()+sin+w'()sin+()"1_1381329870FMfMfOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39q:) ="cos+u'()sin+()+sin+w'()cos+()Equation Native _1394528832^wFMfMfOle CompObj f FMicrosoft Equation 3.0 DS Equation Equation.39qU{l[ =', FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo!"Equation Native #9_1381330075 6$FMfMfOle $CompObj#%%fObjInfo&'Equation Native ()_1381330132)FMfMf d  FMicrosoft Equation 3.0 DS Equation Equation.39q I\s  FMicrosoft Equation 3.0 DS EqOle )CompObj(**fObjInfo+,Equation Native -)_13943626431.FMfMfOle .CompObj-//fObjInfo01uation Equation.39q 3d[ x FMicrosoft Equation 3.0 DS Equation Equation.39qS# u(x)Equation Native 2)_1394362637c3FMfMfOle 3CompObj244fObjInfo56Equation Native 75_1381330303';8FMfMfOle 8 FMicrosoft Equation 3.0 DS Equation Equation.39q w(x) FMicrosoft Equation 3.0 DS Equation Equation.39qCompObj799fObjInfo:;Equation Native <5_1381330425=FMfMfOle =CompObj<>>fObjInfo?@Equation Native AC'@ R x (x) FMicrosoft Equation 3.0 DS Equation Equation.39q'f R y (x)_1381330461"BFMfMfOle CCompObjACDfObjInfoDFEquation Native GC_1381330491GFMfMfOle ICompObjFHJf FMicrosoft Equation 3.0 DS Equation Equation.39q'`7k r x (x)ObjInfoILEquation Native MC_1381330515EOLFMfMfOle OCompObjKMPfObjInfoNREquation Native SC_1381330547YQFMfMf FMicrosoft Equation 3.0 DS Equation Equation.39q'_7 r y (x) FMicrosoft Equation 3.0 DS Equation Equation.39qOle UCompObjPRVfObjInfoSXEquation Native Y)  x FMicrosoft Equation 3.0 DS Equation Equation.39q# 7` _1393676146J,VFMfMfOle ZCompObjUW[fObjInfoX]Equation Native ^)_1393676133[FMfMfOle _CompObjZ\`f FMicrosoft Equation 3.0 DS Equation Equation.39q# `Df U FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo]bEquation Native c)_1394518745m`FMfMfOle dCompObj_aefObjInfobgEquation Native hE_1394281222eFMfMfU){l[ ("U)=0 FMicrosoft Equation 3.0 DS Equation Equation.39q8&d[ ="N+"T+"M()Ole jCompObjdfkfObjInfogmEquation Native ndx 0L +" FMicrosoft Equation 3.0 DS Equation Equation.39qCpx|a U=up x +wp y +m z ()dx 0L _1394598976jFMfMfOle qCompObjikrfObjInfoltEquation Native u_1394524659roFMfMfOle yCompObjnpzf+" +p"S FMicrosoft Equation 3.0 DS Equation Equation.39qU4** p x ,p yObjInfoq|Equation Native }P_1394524674tFMfMfOle CompObjsufObjInfovEquation Native 6_1394611150hyFMfMf FMicrosoft Equation 3.0 DS Equation Equation.39qU. m z FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjxzfObjInfo{Equation Native >C"l[ "U()=NTM)#*# T u'+cosv'+sin'{}+ T u'v''{}()dx"p x p y m z )#*#uw{}dx 0L +" 0L +" "p"S=0, FMicrosoft Equation 3.0 DS Equation Equation.39qU W  FMicrosoft Equation 3.0 DS Eq_1394530109~FMfMfOle CompObj}fObjInfoEquation Native )_1394611261FMfMfOle CompObjfuation Equation.39qC* =cos(+)"sin(+)0sin(+)cos(+)0001[]. FMicrosoft Equation 3.0 DS EqObjInfoEquation Native _1394599171FMfMfOle CompObjfObjInfoEquation Native 9_1394599186FMfMfuation Equation.39qC{l[ u=p FMicrosoft Equation 3.0 DS Equation Equation.39qC Ho uOle CompObjfObjInfoEquation Native )_1394599247FMfMfOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39qCIK* u T =uw)#*# FMicrosoft Equation 3.0 DS EqEquation Native e_1394531126|FMfMfOle CompObjfuation Equation.39qU {l[  FMicrosoft Equation 3.0 DS Equation Equation.39qCbpl[ NObjInfoEquation Native )_1394611408FMfMfOle CompObjfObjInfoEquation Native ~_1394533783FMfMfTM)#*# 0L +"  T D 1  ()dx"p x p y m z )#*#dx 0L +" +S T ()[]p=0 FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjfObjInfoEquation Native 6U{l[ D 1 FMicrosoft Equation 3.0 DS Equation Equation.39qCl[ D 1 =ddx0v'+sin_1394611498FMfMfOle CompObjfObjInfoEquation Native _1394446272FMfMfOle CompObjf0ddx"u'+cos()00ddx[]. FMicrosoft Equation 3.0 DS Equation Equation.39q‘p> x()=ObjInfoEquation Native _1394446280TFMffOle 1"xL() 1 +xL 2  FMicrosoft Equation 3.0 DS Equation Equation.39q0Hl[ r x r y {}=1CompObjfObjInfoEquation Native L_1394519541Fff001[]"N()r x1 r y1 {}+Nr x2 r y2 {} FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjfObjInfoEquation Native U˜l[ N=sin 2 " 1 2I 2 ()sin 2 " 1 2()cos 2 " 1 2I 1 ()sin 2 " 1 2I 1 ()"sin 2 " 1 2I 1 ()cos 2 " 1 2I 1 ()[], FMicrosoft Equation 3.0 DS Equation Equation.39q0{l[ r x 0_1394447376FffOle CompObjfObjInfoEquation Native L_1394447404FffOle CompObjf()=r x1 ,r x L()=r x2 ,r y 0()=r y1 ,r y L()=r y2 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoEquation Native _1394447554FffOle rб^ 0()= 1 ,L()= 2 FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjfObjInfoEquation Native 6_1394447536Fff   !"#$%&'*-./012356789:;=>?@ABCDEFHIJLMNOPR L3 I i FMicrosoft Equation 3.0 DS Equation Equation.39qo}3 I 1 =1"xL;I 2 =xLOle CompObjfObjInfoEquation Native _1394428692FffOle CompObj fObjInfo  FMicrosoft Equation 3.0 DS Equation Equation.39qD{l[ ,,() FMicrosoft Equation 3.0 DS EqEquation Native  `_1394611735FffOle CompObjf      78!"#$%&'()*+,-./0123456:9;<>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{}~ytBDd JJb  c $A? ?3"`?2E yRB/~0Q!Ln`! yRB/~0Q:Rxcdd`` $X bbd12,(ㆫaZ(Wcgb ԀРc@ UXRY7S?$L \%lG!XkX P.P16b`a p]c!#RpeqIj.<E.|b?e\8ODd IJb  c $A? ?3"`?2E 4@ &[A!Gn`! 4@ &[A:`!xcdd`` $X bbd12,(ㆫaZ(Wcgb ԀРc@ UXRY7S?$L \^KuG!XkA.j]b m(0dUrIK.1@``I)$5dP"CX[> 1@`2`D8$Dd HIb   c $A ? ?3"`?2Ea'8vVnQ!Bn`!a'8vVnQ:@`!xcdd`` $X bbd12,(ㆫaJ`t`3H1g`Yj@hPs 5< %! `35)d`A $37X/\!(?71!bD VpZnʞZh*6b`YPQ$Ap]c!#RpeqIj.<E.|b?e](6Dd @HIb   c $A ? ?3"`? 2ilJoXEh.5#/2 ǔE=n`!=lJoXEh.5#/2 ǔ   xcdd`` $X bbd12,(ㆫab`R`3H1g`YǀP1aP5< %! `35J ,L ! ~ Ay ?'r}w,@u@@ڈ+1 Ug_7dA7d${ۣͭ2 HB  1=0{Ĥ\Y\E.-vPDDd @HIb   c $A ? ?3"`? 2hbuF*{%D\n`!<buF*{%ݲ@   xPN@ }v i%Nu  D2t$C V 1#~?*JkZu{g :@ @1x:xHWduB&Al DXuL:spg"DRDMYⳢ/iO5\-}^ʳZ['f[7y: r!m "}f;ԍE;v4o 6[ O<Dd hHJb   c $A ? ?3"`? 2%B6Sbzn`!Z%B6S @@2|(xQ1KP%U A!:ԥ[bG3Dt -N uqBq=ұ3N}u"1<5#EQ억הm~=[> W>I(1M]?%/ic+4IiEӃwN]Do̙'ys*7Pγ(pӅajcgbל]̅eYnVPǦ-U$)/A?Ѣe5ćdQ:Dd |HJb   c $A ? ?3"`? 2Rn?ѢgZ`n`!XRn?ѢgZ `@20&xQJA};wL%bqZ,B+N8 $pnV|`iO@H%xYB y35@ &%O.f$sg"V_r#W7 bs ?Jx@zi"l?GF| ݧ L~e15:ggm뼏94Жlz}.Qan`!Ygsf[>Q @k|'xN@ @"N1C0@CJmHH, l#T1!~XKNl3h^iR[ƌ-R}^ڳluYZ[7Z>٬]tpӾK e◇@ѰY2<<=MFe`^+yRjJurxL8rF3!} ywp&VMX?y׾#3.uB[|kO`dHe?`@>Ӯ2zdwP7b<Dd 0|GJb  c $A? ?3"`?2rH^X K=o[b+!n`!ZrH^X K=o[ `k0(xcdd``fed``baV dR`1FYzP1n:f!?P ؀깡jx|K2B* R vfj KXB2sSRs"6~.ObӺXt9WQ&VJ~Jߐ"|F=SNJdbA`v P/ͭB  a&;F&&\.P0u(2t5-v 1@U eDd HIb  c $A? ?3"`?2Eږ"㨧P#8!g#n`!ږ"㨧P#8:@`!xcdd`` $X bbd12,(ㆫaJ`t`3H1g`Yj@hPs 5< %! `35)d`A $37X/\!(?71!bD VpZW>Zh*6b`YPQ$Ap]c!#RpeqIj.<E.|b?e̐7%Dd8m/`  <j5[A zadar2q4Hku)c6x3-mOMb%n`!E4Hku)c6x3-mO8{5Q)vx[ pSU~i6%h)/_Z4/MҴI6"8"T*@ae .+,,u0~(..#UֿuE^{M˴8KY;sw~~TL"è1jbS CD%\rAN3*pS~ip`7PC E*ţn`x|FNզa`;b2Ir5g~0YȜo=yx\оY_\jݗ)OS3á hIl:A~)Gyk~}!͐l7aEt<R'+O87H:>w8vg|;6ڌ2[T782bSB+[Xŷ %^AY!g=xl C2|d|[1+h =a$--^733Θ܎e67FWez͈d~gR#~ާU=)kȼ+tG~aE~ ړ#ouLwW9:= }c#h ͂0< BмEi/hGܯ 4 1^]IEG?Mr"w,C$_~E׷qѹi]osjW'GhBNf/Wtŀ!&(w2>R-ȝԻ'\|w3g݋/5zzU|Df<1s'+<Y=C\\doў3l؃*E>2~uY;[Vu-Lj--^ѥ\ɵ9;F<ܯ* CL:9l7UGţ_ 9-yp+׫ F(Qg-ߪK+TG~.Dn4Kt],źaN[h\ 9;)]~EWbQ b|O^Xzb~*W.Z<ؾ/Wt}>mǾ)|])~.Do|}t]>JAboLţ 9A% +E-y:gc-CV ~.Dn4Kt]V mN_ٕLR{╹/D*5}t]U~8x5ɶ`U-|!'r|]7!Zt*8'x>#EG?Mr"7SD%E-;dkճCTţ 9{oUKt]U fF VUtOӅ=s +կZsC(U_WIţ 9]~Ej C!KGEWw="'rʼDW_ѵ< ֚[5ބ2/U Zʎpw)R3\}[>M[ 39'y!E`~Ðz-6Õ3}Zهda`$}#1$ BN _ݔGvԔזΙ^+P朘>F_@\=XCb^VlUC݅ķRIx)&mk\[]e9_^e;n)g?ĮqFձ&$^WF?~7m77E&_17̝dgd z|-+\;Mp-"}Aȅ>rg)]ukѶѵs@-!_iΟPWphP d= 2{0Fhw;d`x (gzσLON~p { I1ܻu֔g%/i7|Pn 5&(}؟TmFЇ>SVz 9IȽͬHwl+w;z˹A{N*2gh:#>6[^N'Hs:n|o0ï6VFY4!\#s-nf&NGṠT.]q{ȲT.kS9H?qծ5פ,u,wMzאɻpoƇ %e "NL-.lr]xN9u9S`7N l, ?u}oѽ]X;'#K Ox ?rxZ1,˗q/c m9?/hYJR롟.HfvV|FwEls`p|,ꠖ":tW^a  KIBOtyɲ%_'?_1f̙%xnL<'?¿"/-@ b_w6}>idtf: 7yͦ;!n1*36A&}{0mrSNÕ0q 'Dd @HIb  c $A? ?3"`?2D:hdM\BJ > 4n`!:hdM\BJ >:@ xcdd`` $X bbd12,(ㆫab`r`3H1g`Y@Ў 6n`!cxbvJd$>Ў:Hxcdd`` $X bbd12,(ㆫa:Q( TA?dAm@ UXRY`7S?$L ZZsy"+8|-O;T 4Hq%01Z$A.$Cr;F&&\y @ ]` ?l,L0B<_Dd @HIb  c $A? ?3"`?2tdi*h{8n`!}tdi*h݂  KxRJP=wW҂!+؅" .`BuW.!tnƙ$L23̜;W]!g5)H)X[j>3\@nja `l GlXL{^^/>dRv";n﹇籺;51\0ͼ뙿Y e|<F/U9)x"/2ׄGeET8.Iݩg鿯凌_eިĐ/Q"6N03VП$0a;]3oԻ}vDd HIb  c $A? ?3"`?2=. بhZΘ:n`!. بhZΘR8\ `\xS/A3U\h (]a I7^\\H]d\%Fͼ7@qքؚ݇qZM.{)߅C݀5 bg2߶ @<4.0]M{56@X9(=`KaW'_sk%$A8 )e1}{"ޘk!cqZ̎wJZ-TBcޯ<$[ú/p~[m8U-x2)kjB˩3=0Ol_z鼣_i'ƸIG=y|āhb] o/zyߘ7*m9.Eɦ|_sp PET(iQ@d8{%3=pd@d9$R9%q ~Id$$If!vh5'5#v'#v:V l t$6,5'5yt05Dd HIb  c $A? ?3"`?2<_JuRbh Z[3>n`!S<_JuRbh Z@$'`\!xTKA~3&b'b{ں8 _;NA/ Ž?W<?GS[8ĖF"q1BxQfp߿)eUCi4qPnסM q6Yg~a OaUL܅!dW68md$$If!vh5'5#v'#v:V l t$6,5'5yt04Dd |HJb  c $A? ?3"`?2~6]E&dZAn`!R6]E&d @`0 xQ1NP }vB N1& 20!Z)-33` vlm~ϟt别2\wY }7 Pw5wNUȍ{Α=,GN/"  l\Nq]<׹&>6{\%*>^ʓ<%`QUt,xS҇YBk[|ޙO Sc֠x7-m4y%bDd @TIIb  c $A? ?3"`?2^>Díe_;Vw:Dn`!2>Díe_;Vw  XJxcdd``> $X bbd12,(ㆫaR`b`3H1g`YˀРc@ UXRY7PL ZZsy"+8|-_%Zh*6z YU o@ H5d V @Cn% C `PcdbR ,.IeXr'P"CDPAg! Cbd`CL>Dd $HIb  c $A? ?3"`?2n:31$xI%dFn`!\n:31$xI%6 9@UY0= *x]lTEνmcS[&IjjcLYBmhH|&4>`!'/ uΜ3;nw9s̜à 'odZx>畴}KRn* ~+tԝIw?pXužāl0(3{s'1t/6$щm0tV)'RB*v|E"*q[={}!m 9|Ǭyo3D}a+?$ECZC=jIg}˺PZq~FP/PvP/||21͎Ɂ|)f; \<1[T> v@՜ o4uWVJҗQ#WDdk|Pfv1BU64/k*&"5)^j-=XùzekRc+R$eċ~N~w50kݝ3|9"_|'qAH/2Yck,{׌=W{jSWmǽI仡=r<ǽ7Zc wy'j_\5iIl3R'ͧ+bOb Ϣ&ޙծ}b+b/Tk3Kl T=V٨ ~N=9rJoyuJ'U}N>ڽLK~oj?x^}˞fOuЌmwl1?'lTb:8o Ϸ}OSo4ܑ_QrUiNW\i?UȁaTxJۿ߼{?8S߃״]ZO!` z8bhS8<Y_Ayvt|^5SOIsTv#hbk9O9qWb+.C(rfFߚ;B}(y Z8 'ų$7´zogoA< 'HRd$$If!vh5n5#vn#v:V l t6,5n5yt0Dd FJb  c $A? ?3"`?2D(d([] Kn`!(d([]:xcdd`` $X bbd12,(ㆫaZQ( TA?dAi@ UXRY7S?$A $37X/\!(?71!bD VpZ͛T 4Hq%0:09 +$%\`v0y`;121)W20cPdkag!`P;3Dd `HIb  c $A? ?3"`?2}G#L > }8YMn`!QG#L > }8z L"X xT=hA~o沗[̺xgl+ Ⴇ^VV)Oň 6") Vv6FAB<ߛ]3vyޛB@.g1Zf'p8YFp.ҊQ(LQ`O: trڹ<S~G:&+1E}X.O}.xZo_ ƾoq&w&Tbq*Wgdoy~t|7)ʻ~797cs r§^cGջy|s3\}/O'@? Det(Ĺ崻 #,<35#]+ѼfR)d$$If!vh5 5#v #v:V l t6,5 5yt0CDd IJb  c $A? ?3"`?2ta>5C1iMQn`!ata>5C1B8/xcdd``Vdd``baV dR`1FYzP1n: B@q56~) @ K D00 UXRY7S?$ ZZsy"+8|-N4Ah*6b`| roA%/h-$/ RPr,NM\xJK *bfggOJkfhSܶ=XkTVp rsˮ -McA?nY_x4%+&_4b}i?eZg} =gcv.a(<|l2=eENwNb]'6{Dd hIKb  c $A? ?3"`?2jqRM{fUn`!jqRM{f@ hxRKPwI Ctf'!HFBN.ut_D)Tpu/bxwIS蕗{w tLmcmINaEj6S\%W30?wǑJ|)z߯M 9ʾ.`ZYMQcDGWN=+2qO1.ѹ삫 Bz#{ع|.0Ӳנguc=JtWr%~[p~ {d޵ע^2/Ozʫw!~"0C&s s;"LK$wR5l]-¹"od&=wPDd FJb  c $A? ?3"`?2D<3& Xn`!<3&:xcdd`` $X bbd12,(ㆫaZQ( TA?dAǀ7$# !lo@I 2w! @Hfnj_jBP~nbC@\C2m& P.T mhrJ. r % 1 `؎wLLJ% :@~Yb#a+9#)Dd HHHb   c $A ? ?3"`?2sXmGUϠ OZn`!GXmGUϠ b (@`4>"xMHTA3Lw]vMtVn"v%tnT/*豋`]<)<$:P'}ei~n7\[7,k4=9B3X=L\3vBp @)>WO@kg߅ϮqkzӇGG sGo2rsE\˖#+iAz(+kzL(关5Ώx`Gi]!ONۣ"mwq'=h؇H·W@|tU?"-7.F('G( 8qyG/cf$o;/OVWqQlnn!+RFK:Of?mR~5kZLoq.j}'O?j}OcHO{Qw!yAK~5QNs.z著#;=I^R~써ےc8g_:*{?[ ]/Hv~%aщϠ cwoupn>wιQ"ѥfQUS$$W6^hN#[FPY{_l٬[z[7ybrB}o:Åުg 392xcōs ~2($'Biuއ5 )e &?Pd$$If!vh5S5#vS#v:V l t6,5S5ytS8:Dd ,THIb ! c $A!? ?3"`? 2`҂Y7ā<^n`!4҂Y7ā XJxcdd``> $X bbd12,(ㆫaR`z(Wcgb Aǀ7$# !lo&A $37X/\!(?71!bD VpZ+m; P.P56zva%/) v'127ъ$J. !؇`gB.I)$5a;ȝ @ ] @U[> b#3X?FNDd HIb " c $A"? ?3"`?!29/mZ󾰢ٴ`n`!9/mZ󾰢ٴ*@ PtpxUMhSA/yIlL5H9h[i= ")M#$5y  c/=y1WA&tfw_F7l|; ~ 0qYb&ek|wD; e^MD?#Vuqīzs7: ҍY Pc!6Y0p#5EbIVze Yf~QMf>/# '> I rř*L^<2xq.{i/DPLĞ #P }6wn9}.ΰ1qxnx&< 1xfb~V((i-XZE1$-|9a3əgKc-׳uUkqW3%ٴ!㯇T`aj8.7%SƿtU`aj8.wgXbu`cr[R>P[oa9qo$H`: 3Y;;/ɀ&1%78 Un@_7j1g d)d$$If!vh5 5f#v #vf:V l t6,5 5fyt0Dd FJb # c $A? ?3"`?"2D<3& dn`!<3&:xcdd`` $X bbd12,(ㆫaZQ( TA?dAǀ7$# !lo@I 2w! @Hfnj_jBP~nbC@\C2m& P.T mhrJ. r % 1 `؎wLLJ% :@~Yb#a+9# Dd 12b $ c $A#? ?3"`?#2UqP2 V1fn`!)qP2 Vz@xT/Q7vTr!E BpS%D^do !"83h"I4#$jEk͛Nv#JX*mSj.IݎHZ @IǴ' Zل`<>V3 }Wt H蔕]Y(ƍL=Ҵcn+6waY06Em8peKȔ:,JYGˍU?K$\]8/jK :Zf̉LΜ\ɦ+䉊Ppy%$Q@`ܫ9ccQ/i^R8f3nh}!0Ũ h6l:Dž_ⱃ#<٧<ܣ1 :y 9ɬ5QKtʳ'[LNxhmПڪלd$$If!vh5S5#vS#v:V l t6,5S5ytBDd 12b % c $A$? ?3"`?$25Hf :Ajn`!5Hf :""`\mxkQMѦQA!bsP<=9x$ҽ$j. =Aa,G+社sE` <ǹ?8s$ד?\P/k>kAϏX};NO97_a.霴'/%z>}}![]oMժj=;P+K }ل>]㜞>r}ADmŠR.g&~?Bs&/&v׶)P[QtwR[Q0mtEqmhc8 8B1>Q]Z1nS1X >eRΑVLQwYiy1.݌V5NAkS6~-fhIަvi|?oP8眙=`˟s^<~参v/^V۱|S5ܓyiEʸP+u~߽̅DŽ^ܴu_gxu_g~sa>G9vRC3ּ{Y>jʑ"@` M>C;T,Uf >j0#̷ԯ3?|d$$If!vh5S5#vS#v:V l t6,5S5ytB^Dd k|12b ' c $A&? ?3"`?&2 tgκ8\UXz|sn`!| tgκ8\UXz`5+0JxUkA~3fmM `+֛ Ho?) m .OE=x]z_!O*A[v3277{fF@ ( $PK/)D'ylŠ/2r69S@zϫ@ӁOUw+ndZ^Фe~g>Z=ʛVJ~G9E籸zg\O|W ;ݒ$_yQ/;/B}2NaTd{vްB6;oXoXdvްwzyzg֩qBr^,_75ku6P"EׯX$|^Lvu5~}4=p~9 ϥxU $X bbd12,(ㆫar`J`3H1g`YˀXh3 憪aM,,He`HI&meabM-VK-WMc<IT 4Hq=`rof%/) vT@yg03{n`!5>vT@yg03 XhxSOKQ7gWȬD֡STPzFA¶zRR/B>C~PKBuvf޼ͼY1!hE`QIc8PЖ t]WZk" /=')\ A~6pGa\?.:Ur JOOHl-Yuq3^|ч%YˬmW2aG]GHTn5wa>Y*%7U$I&x%T $ uX9j׃?POUyJ{~:dk[8 /`.Wd}2>Τo/8d?hird9rnG3@\)8iA24^IƄ[?dËjd$$If!vh5 5#v #v:V l t6,5 5ytBnDd $T12b + c $A*? ?3"`?*2> ߶3+~ ~n`!> ߶3+~ r HD XJZxcdd``dd``baV dR`1FYzP1n:&lB@q56~) @ k'10 UXuation Equation.39qC {l[ r x r y {}=I ii=12 " r xi r yi  i {}+120"" i ()0" iObjInfoEquation Native %_1394612875FffOle  ()00000[]R xi R yi  i {}(). FMicrosoft Equation 3.0 DS Equation Equation.39qC l[ r xCompObjfObjInfoEquation Native %_1394540274Fff r y {}=I ii=1n " r xi r yi  i {}+1n0"" i ()0" i ()00000[]R xi R yi  i {}().Ole (CompObj)fObjInfo+Equation Native , FMicrosoft Equation 3.0 DS Equation Equation.39qU@{  r x r y {}=I i "I i n" i ()0I i n" i ()I i 000I i [] i=1n " r xi r yi  i {}Oh+'0 ( H T ` lxEXTENDED ABSTRACT TITLEZbynRY7@Y KP 27)?aWw!XkF,@@@ڈјU|m#H沱Մ abAugGuoٕ70d`b doHfnj_jBP~nbAO f=:p{Y ( A.p 0@FwLLJ% AԡTY>|XDd 12b , c $A+? ?3"`?+2 *B1-~C9En`!*B1-~C9 `!@x30= xKhSA̝{ۦUӪo.ZJ!\(UAp Q#ƅTWRTtJv%Z$.\AjH}46uΙ3hp3?g&3à/XxGgLc|zzkޔkTIo "e 龼cq^igtNVjX/!5it3罇 4W>g"K/u4';s0{L%ro =-XbEdmuDܿ^GVu\)M-Dݕԕ>oUeZkݒwyn[]h*{$ˋ B+ӓ>ۑtW8 ڜK"h[f --_`ng סۋzOq2y/o'$qY9OooR})uZ˃@]~)߿U=ÁwFOAry P\ =7tSX)3zn<)2zG5FiMj.wz.E?,<(h "NZPy ]/EmPlOߍ'baAlPo]}֯O ֯bwz_7_ţz}(LIr}/ o뎣+;u+:]lmv|pv*d8āe2j4T#7 99%C1[*Il+2j-֚y* "vivD3딉/vUAL>7}9vT.ϣ8I\gh,?sQȉ@PBDq4^N{+3dGh'uwtFQڤ{v <<$ed$$If!vh55e#v#ve:V l t6,55eyt0Dd 12b - c $A,? ?3"`?,2HnOmh136!>ln`!HnOmh136!> `!@x30= x[HTAǿ3瘫ff5*)KBt&Fٖ A`/E>]$zI,%)z̬n}3gfgsюz~aP ,<)31j2ӮK+<6g'V06尳ľ6~6G^j!? 覊{l'}#\E\EۏṊUߺZ'xdyNTc5j#wqE]kgԕ>'2˵n;ku f|=Yi^+d{۹خ؞T{颹b_X6U.`b䍆o.t@4AA3̭g?=/GM9|UW?:y?׿n^}kgC}ϭ')]1z}K\=cFϭ'OFOGQ_MSq=<Aݠ9üԷT .!db[O66s\=6mAlPo񻞻__Vp[n=![? 3%ʃw+!t댣+⺅}i.mrc*$sjkXġy^A:R#/i=p]"N]s)ѥGȰV/}QM0qƱCALcqpG^yS|}w%=_>" <-Ѿ(x h\^٣z~=V{x/ d$$If!vh55e#v#ve:V l t6,55eytTIDd D012b . c $A-? ?3"`?-2x.n`!x.  *HxOHQ߼y3v[\ 0:`!Q` H'(at ;ItK]tЃM"Bޟ}KF;yy~ MGpcy5Mi831BB8C$*7Pr^=g B ֎k$BE[רk]a*W":6r_?B!@L?6'BhbW`B][젧ݴ2ZvUhj|(YA`؉Ǫ;̃w3+'6'{dHu@M>~ [G LeU:z+'FT(GuN@j?N? |;:n})eAgx+^aіz$ւuA~^sSE-UW8O)yN=bp+w23LSy(?k*&fFv&yCV5L۽tGHtřu). .q4_}]l9/}Kbo7ewe؟VA9GGԊbbá}]x|ȅ_vb:uM4ՖZ ęS7t=>>>(GǏ[YNm<1::IZQ+<);QyIU~l[l?~Ȟ,M]2𸘝 qAG\5`տ`0:-׵6Me1Ġ NMh.yXYk&2god5p .fBGԠFZriތ_Qp&8wcFDLMTۉn&2M-gaLn3K=h).La7wz$$If!vh555p5#v#v#vp#v:V Fm t0s6,555p5ytT$$If!vh555p5#v#v#vp#v:V F t0s6,555p5ytT$$If!vh555p5#v#v#vp#v:V F t0s6,555p5ytT$$If!vh555p5#v#v#vp#v:V F t0s6,555p5ytT$$If!vh555p5#v#v#vp#v:V Fm t0s6,555p5ytT$$If!vh555p5#v#v#vp#v:V F t0s6,555p5ytT$$If!vh555p5#v#v#vp#v:V F t0s6,555p5ytT$$If!vh555p5#v#v#vp#v:V F t0s6,555p5ytTDDd1G+n` 0 <wh(dA/ okvir/2]e&g3U lқn`!d]e&g3U Xf{Kl2xXoh͟vbo&fn6f2qFjMnI6I +PCQ(- "~}<P "*V1wf<7][~ 'wϹg~w=L*pz) 1|@J`ɳз<`)0 I3@]bAc3%-Pu|aHjbIfxKG wOXAZZ/ZI%c z\ jq̀j0%05H~wjr51XeKXtmŧ UYlGĔ1}LmG}X Z`w)NJ$#zbYƯ$384 / ˹Tbr'h}Š$ӐҺs_ɟr/15v6N]Quu3ga?S"/R^UF^: Ty1xZ_5 dV'{zۼl`IxbC\y$]|_w GQ-qjnKXex !MOJ1G=na(ack v1 b-y1nb<ƍ n`>]$A|3A|)kEuW^Tɟ &ꏰm}]yգ?|թ@wZ툻J`l|="jc[G5lѐjzjhI=eIu s=<؇0_z`OWy]kk6$"ؓJ6"Nh6$ēZ^C'niMm8Țގī:` g~Rd6V'W($w^o; 胰?;s9?uxM83xA>.8^(#釴b磒?+ǜa%wo>+sA+7 + z^gJd>`hK=׊=?!{avڝצ{wx'a Kvz5;^W=ծ zso|9|O3%b%?>8=z`OW9av?$U^~MzeLb1 f 3wa>͏m k>t̅>пJQv3>;.q?S!ɾKSoj{#ލCigp7}޻M (P7Z5uEӱ7Dm+Fށ[}>:}EJMfE|wwJ(t˽LL>Ė*V6Mr쫳u)݁hgۅzusZBsFcT;Sjgg+371%\'knۢvJ+14o5o*f&Zo6k#ڊzuQ"9Ja?0{\h׾FjA {5ƾg^'=s,v=m|X {ruϞe ?m:+*kʺ|wC'-}9bjNh)R}=Rx}kke6FH^?ض~Fk[_dn   F'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.89q^( 666666666vvvvvvvvv6666666666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmHnHsHtHR`R Yw{Normal$x`a$CJ_HaJmH sH tHb@b 4 Heading 1$ & F <@&5CJKH \^JaJ V@V m Heading 2$ & F<@&5CJ\]^JaJ^^ 5A Heading 3$ & F<@&5CJOJQJ\^JaJRR 5A Heading 4$ & F<@&5CJ\aJTT 5A Heading 5 & F<@&56CJ\]aJJJ 5A Heading 6 & F<@& 5\aJDD 5A Heading 7 & F<@&CJJJ 5A Heading 8 & F<@& 6CJ]P P 5A Heading 9 & F<@&OJQJ^JaJDA`D Default Paragraph FontRi@R  Table Normal4 l4a (k (No List 44 < Header  p#4 4 < Footer  p#`O` aiTitle1$x@&`a$!5;CJ KHOJQJ\^JaJ @O@ FAuthors$a$5CJZO2Z FAuthor Details $77]7^7`a$CJ|C| r, Table Grid7:V0$x`a$8"@8 &Caption5CJ\aJ6U@a6  Hyperlink >*B*phHrH kcTable$`a$CJaJmH sH DD xlabel$x`a$5CJHH _ Balloon TextCJOJQJ^JaJB'B yComment ReferenceCJaJ<< y Comment TextCJaJ@j@ yComment Subject5\RR FAuthor Details Zchn_HaJmH sH tHDOD q/ Referenzes  & FmH sH ZZ qytKNS - Tekst Referatu d mHsHtHRR qytKNS - Tekst Referatu ZnakCJaJ&& qytdictdeffO"f he MAIN HEADING"x`"5CJOJQJ\aJmHsHtH 2 ! List numbers# & Fd5$7$8$9D>T8.H$Tf^`CJPJaJmH sH tH XBX oGv References$ & F <CJOJ QJ mH sH tH JOJ lJ7 Bulleting %xOJ QJ mH sH tH eb 'lJ70HTML PreformattedI&$ 2( Px 4 #\'*.25@9`a$)B*CJOJQJ^JaJmHphsHtHbqb &lJ70HTML Preformatted CharB*CJOJQJ^JaJphPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK]  ;         { Y m[]:; < { @   D  D  H 0 H}# (K(()B*r,501V456t8;>|?@kAABe"$%&'(+,-/0134789<=>ABDEGIKLNSY[\bdims #(F((t*w,055"6P6x67778888>>>f?|??@@@@lAAA#)*.256:;?@CFHJMOPQRTUVWXZ]^_`acefghjklrw-0^w= Q S c w y    ! 5 7 ; O Q _ s u J ^ ` c w y ~ $ 8 : = Q S V j l r 13  !#-ACG[] Thj 46n]qsw:NP ##!#%%%((()))+++4.K.M..//m000&1=1?1;XX:::::::::::::::: T::::::::::::::::::::::::::::: T T T T T T T Tl,2$yU׶E] f @0(  B S  ?;rw~TY^fel %V`     9=EI#( +06 D T Y !!!"Z$d$$$ %*%D%N%`%j%''D(N(.)8)[*e*T,X,`,d,----)33344{555555I6P67$777777798@888=9E9f9z99999B:F:N:R::::::::::;6 = adb/7777788"8c8888f9|999:::::::::;3333333333333333; R 4G^  Tk 7nyyVVWW`kmp%%(())++4.N../m00&1@1:::::::::::::::::;;;;;;;;;;;;;;;; R 4G^  Tk 7nyyVVWW`kmp%%(())++4.N../m00&1@1:::::::::::::::::;;;;;;;;;;;;;;;"|Bb#}Z~ ts.Hb}Bu4*3DDQIpoMB  `@5 NF 2v90oh@3$@v 4޶$&1jD Lu #*Ĝ %~H5 )03=pc?{uK Cu/AKT&IX$Zd7+\T_a ~qč$Lvs|:z|},^`.^`.^`.^`. ^`OJQJo( ^`OJQJo( ^`OJQJo( ^`OJQJo(hh^h`. hh^h`OJQJo(h ^`hH.h ^`hH.h  L ^ `LhH.h ` ` ^` `hH.h 00^0`hH.h L^`LhH.h ^`hH.h ^`hH.h pLp^p`LhH. 7^`o(hH. @@^@`o(hH. 0^`0o(hH.. ``^``o(hH... ^`o(hH .... ^`o(hH ..... ^`o(hH ......  `^``o(hH.......  00^0`o(hH........h hh^h`hH.h 88^8`hH.h L^`LhH.h   ^ `hH.h   ^ `hH.h xLx^x`LhH.h HH^H`hH.h ^`hH.h L^`LhH.h hh^h`o(hH[]h ^`hH.h  L ^ `LhH.h \ \ ^\ `hH.h ,,^,`hH.h L^`LhH.h ^`hH.h ^`hH.h lLl^l`LhH.h ^`o(hH()h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH. ^`o(hH[] ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.@^`56CJOJQJ^Jo(h ^`o(hH()h ^`hH.h  L^ `LhH.h \ ^\ `hH.h ,^,`hH.h L^`LhH.h ^`hH.h ^`hH.h lL^l`LhH.^`H*OJPJ QJ^J oo^o`hH. ? L? ^? `LhH.   ^ `hH. ^`hH. L^`LhH. ^`hH. OO^O`hH. L^`LhH.^`CJhH) oo^o`hH. ? L? ^? `LhH.   ^ `hH. ^`hH. L^`LhH. ^`hH. OO^O`hH. L^`LhH.h ^`o(hH[]h ^`hH.h  L ^ `LhH.h \ \ ^\ `hH.h ,,^,`hH.h L^`LhH.h ^`hH.h ^`hH.h lLl^l`LhH. ^`hH. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h hh^h`hH.h 88^8`hH.h L^`LhH.h   ^ `hH.h   ^ `hH.h xLx^x`LhH.h HH^H`hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h  L ^ `LhH.h ` ` ^` `hH.h 00^0`hH.h L^`LhH.h ^`hH.h ^`hH.h pLp^p`LhH.h hh^h`hH.h 88^8`hH.h L^`LhH.h   ^ `hH.h   ^ `hH.h xLx^x`LhH.h HH^H`hH.h ^`hH.h L^`LhH.h^`CJo(hH()h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH.h hh^h`o(hH.h ^`hH.h  L ^ `LhH.h \ \ ^\ `hH.h ,,^,`hH.h L^`LhH.h ^`hH.h ^`hH.h lLl^l`LhH.h ^`o(hH()h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH.h^`OJQJo(hHh^`OJQJ^Jo(hHoh  ^ `OJ QJ o(hHh\ \ ^\ `OJQJo(hHh,,^,`OJQJ^Jo(hHoh^`OJ QJ o(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohll^l`OJ QJ o(hHh ^`o(hH.h ^`hH.h  L ^ `LhH.h \ \ ^\ `hH.h ,,^,`hH.h L^`LhH.h ^`hH.h ^`hH.h lLl^l`LhH.h ^`hH.h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH.h ^`hH.h ^`hH.h pL^p`LhH.h @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PL^P`LhH.h ^`o(hH.h ^`hH.h  L ^ `LhH.h \ \ ^\ `hH.h ,,^,`hH.h L^`LhH.h ^`hH.h ^`hH.h lLl^l`LhH. 7^`o(hH. @@^@`o(hH. 0^`0o(hH.. ``^``o(hH... ^`o(hH .... ^`o(hH ..... ^`o(hH ......  `^``o(hH.......  00^0`o(hH........*D oMB F 7+\`@5 }3=I %H5 ) #ac?z|~}|/AK@voMB F F F @F F F F K C9~q$Lvs4X""<mj)        j6<N=$jsP ]Oki|-'qAz} Vx(4-| !]q'| wc3Ka-f^x8)~  a " % : #h w - < M ;T X R E b +@%p*s}.DP8k`Kf+BCUqI7s`GwKUL. xj$J '/gnvZDgIh0 !<" H"tk"X$Z$F%x% %MD%aK%o%&)&d6&q '*'b`',(-(>(M(d( o(%)@/)*,*9*EC*X*+)+~+,8Y,-M7-c-}-- .2.7N.u.J/`[/\/bn/q/ 00?0&252A%444_4476*96Z6lJ7e78db8|899I=9:S8:R;<V1<n<=>&= (=/="H=L=RW=K>\o>s>?7?l?;d@xy@z@)ALAyAOB`BsBqGCHCSCuCvCwC3xC>~C/DIyD:EGErE-FhFZ}FR#GoGwGHrHtHyHIIuI/gIuIJM!J5J?8JCJK!K%K0KKHKKzLbLi%LbLL]L'M>M bMNvNOgOPPVPVPzPh:QrfQwQ*RERVNR+S LS\SdTTUIFUSUiU~nUW@W3WAW}MWUXWXZX~XjY0YlJYrY ZNZkYZ`bZ'[=[w[P\ ]\']*]@0]B2]*m]q^_&_-_F_x_1 `+1`w`fOcdc_ec7dXet.eAePHehe_{fNgxgNh3h}hZ ii'iGioiyj Bj [j\jgj]pk=lJl|YmZm0nHn&odop pp q"Yq4rZ sksMtftqytyXu^ujutEvoGv[vww]w xbx!yJ1y9yr>yByzrUzM{Yw{7| g|}<}M}1\_ ^oKlw@qEJ`u*a%5PYvxb}! DLeS-__Ny/@ vL$H&)zTIR/v6GS{&MB::@ddddd!d"d(d)d*d,d- 3666768;``@` `@``(@`*`X@`.``@`6`8`t@`<`|@`@``@`Unknown G* Times New Roman5Symbol3. * Arial7.{ @Calibri5* GreekC?= * Courier New (Asiatische Schriftart verwendeTimes New Roman5. *aTahomaG5  hMS Mincho-3 fg3* Times;SimSun[SO;WingdingsA BCambria Math"qBgR%2j%2j 24d:: 3qHX < 2! xx2W:\Institutsvorlagen\Word\AMBDokumentation_Eng.dotEXTENDED ABSTRACT TITLE Zbynk Hrub edita.papa"                           !