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Bipolarons and polarons in the Holstein-Hubbard model:Analogies and di�erenesO. S. Bari²i¢1 and S. Bari²i¢2
1 Institute of Physis, Bijeni£ka . 46, HR-10000 Zagreb, Croatia
2 Department of Physis, Faulty of Siene, University of Zagreb, Bijeni£ka . 32, HR-10000 Zagreb, Croatiathe date of reeipt and aeptane should be inserted laterAbstrat The single bipolaron problem is examined in the ontext of the 1D Holstein-Hubbard model, em-phasizing analogies and di�erenes with respet to the omplementary single polaron physis. The bipolaronband struture below the phonon threshold is revealed, showing a omplex relationship between numerousexited bands as the adiabati limit is approahed. Light bipolarons with signi�ant binding energy, thestability of large bipolarons, the small to large bipolaron rossover as a funtion of the Hubbard repulsion,as well as the bipolaron dissoiation, are investigated in detail, disentangling adiabati, nonadiabati andlattie oarsening e�ets. It is emphasized that ondensation of bipolarons ours in the dilute limit onlyat very low temperatures.PACS. 71.38.Mx � 71.38.-k � 71.27.+a � 63.20.kd1 IntrodutionThe polaron represents a quasi-partile involving a sin-gle eletron oupled to the lattie degrees of freedom.This oupling introdues loal orrelations between theeletron and the lattie �eld, haraterized by a �niteeletron-phonon orrelation length dpol and an e�etivemass mpol. The translational symmetry of the lattie ispreserved beause the eletron and the lattie �eld (de-formation) an travel together. When the loal Coulombrepulsion is not too strong, a pair of eletrons an bindby sharing a ommon lattie deformation �eld. Suh anentity is alled a bipolaron. The bipolaron ondensationenergy ∆bp is de�ned as the di�erene in binding energiesof the bipolaron Ebp and two unorrelated polarons Epol,
∆bp = 2Epol −Ebp. The bipolaron mass mbp is assoiatedwith a joint motion along the lattie of a pair of eletronsand the orresponding lattie �eld.The present work is foused on low-frequeny proper-ties of a single bipolaron in the ontext of the Holstein-Hubbard (HH) model [2℄. Previous investigations of bipo-larons based on this model range from variational studies[3,4,5,6,7,8℄ to various numerial approahes, suh as exatdiagonalization alulations for �nite lusters [9,10,11,12℄and the in�nite lattie [13,14℄, quantum Monte-Carlo sim-ulations [15,16,17℄, the density matrix renormalization group[18℄, and the luster perturbation theory [19℄. Generaliza-tions of the Holstein-Hubbard model have been studied[20,21℄ by varying the range of the eletron-phonon inter-ation. Perturbative expansion around the atomi limit isanalyzed omprehensively in referene [22℄, whereas theexat Green's funtion for the two-sites problem is de-

rived analytially in referene [23℄. A broader overview ofthe bipolaron related physis may be obtained from refer-enes [24℄, [25℄ and [26℄.Although a number of methods have been developed inthe last deade to investigate the HH bipolaron problem,the desription of an important part of the phase diagram,whih involves large adiabati bipolarons and assoiatedrossovers to other regimes, is still sant. The problem liesin eletron-phonon orrelations that emerge when the ou-pling is strong and the eletron-phonon orrelation length
dbp is large, dbp/a ≫ 1 (a is the lattie onstant). Namely,suh orrelations impose partiular demands on an au-rate, quantum treatment of bipolarons sine the orre-lations with many phonons at large distanes from twoeletrons have to be taken into aount.For exat diagonalization approahes [13,14,27℄ thatare based on a trunation of the Hilbert spae, the num-ber of states that should be onsidered grows exponen-tially with inreasing oupling and inreasing dbp. Thislimits the aessibility of the phase diagram for suh al-ulations. Indeed, to best of our knowledge, all present nu-merially aurate studies of the quantum HH bipolaronsare restrited either to weak ouplings or to limited val-ues of the adiabati ratio t/ω0 . 2, where t is the eletronhopping energy and ω0 is the optial phonon energy ofthe HH model. In other words, the formation and prop-erties of large bipolarons with signi�ant binding energystill represents a hallenging subjet.For the half-�lling ase, the bipolaroni phase has beenstudied by the dynamial mean �eld theory (DMFT) [28℄.However, this partiular ase of high harge onentra-



2 O. S. Bari²i¢, S. Bari²i¢: Bipolarons and polarons in the Holstein-Hubbard model: Analogies and di�erenestion neessarily di�ers from the dilute limit, when thesingle-bipolaron theory applies. Furthermore, sine its dia-grammati expansion neglets vertex orretions involvingphonons at di�erent lattie sites, the DMFT for �nite-dimensional systems fails to desribe properly the adia-bati eletron-lattie orrelations spanning several lattiesites [29℄. For the HH model, with loal oupling and lo-al phonons, this problem is most pronouned for the one-dimensional D = 1 system beause, in this ase, large adi-abati (bi)polarons are stable, while suh orrelations forhigher dimensional D > 1 systems [30,31℄ are short-lived.The treatment developed here ombines the resultsfound in the adiabati limit with numerial results ob-tained by the reently proposed relevant oherent statemethod (RCSM) [32℄. Within the RCSM, (bi)polaron statesare obtained by solving a generalized eigenstate problem.The latter is de�ned by hoosing a trial set of the mostrelevant wave funtions after a areful analysis of the prop-erties of the low-frequeny adiabati and nonadiabati or-relations.The RCSM o�ers an improvement over previous al-ulations in several di�erent ways. First, it an be ap-plied to any value of the adiabati ratio t/ω0, inludingthe t/ω0 ≫ 1 part of the bipolaron phase diagram wherethe strongly-oupled large bipolarons emerge. Seond, themethod provides the full low-frequeny band struture ofthe bipolaron states inluding the exited oherent bands,whih, to the best of our knowledge, have not been pre-viously reported. Suh analyses allow a detailed desrip-tion of the bipolaron low-frequeny dynamis and extendthe previous investigations, whih were mainly foused onthe properties of the ground state, to inlude the e�e-tive mass and, in some ases, the dispersion of the lowestbipolaron band. The existene of the �rst exited zero-momentum state below the phonon threshold for inelastisattering had been demonstrated in referene [20℄.The importane of a suessful treatment of the long-range adiabati orrelations an easily be set in a broaderontext, involving models for whih the eletron-phononoupling is not purely loal (on-site) as in the HH model.Namely, for any dimension D, the inreasing range of theeletron-phonon interation results in an inrement of theorrelation length dbp. For D > 1, this inrement neessar-ily introdues large adiabati bipolarons into the phase di-agram. In this respet the RCSM, used here for D = 1, hasadditional advantages sine it an be implemented with ahigh auray to a broad range of models and D > 1.The present paper is organized as follows. After a shortintrodution to the problem in Setion 2, Setion 3 ov-ers the single bipolaron ase, starting with the adiabatilimit and emphasizing analogies with adiabati polarons.In the next step, di�erenes between the polarons andbipolarons appearing with nonadiabati orrelations areexamined. This is followed by an analysis of the role ofthe Hubbard repulsion U on the ondensation energy forboth large and small adiabati bipolarons. In Setion 4 theRCSM is used to alulate aurately the bipolaron spe-tra below the phonon threshold for the inoherent satter-ing. Beside the lowest oherent bipolaron band, additional

oherent exited bands are found to be related to exita-tions of adiabatially softened phonon modes of the mov-ing lattie �eld. Partiular attention is paid to the smalland large U adiabati regimes and the parameter spae inwhih small light bipolarons are formed with substantialondensation energies. Setion 5 gives a brief disussionof �nite temperature e�ets, with emphasis on partiularaspets of the dilute limit. A summary of the results isgiven in Setion 6.2 GeneralThe 1D Holstein-Hubbard Hamiltonian is given by [2℄
Ĥ = T̂ + ω0
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. (2)The Hamiltonian (1) desribes eletrons in the tight bind-ing nearest-neighbor approximation oupled to the disper-sionless branh of optial phonons. The eletron-phononand eletron-eletron interations, given by the last twoterms in equation (1), are loal. While the latter inter-ation is instantaneous, the former ontains retardatione�ets through the lattie oordinates un. un = 1/2 or-responds to the zero-point displaement of free lattie os-illators. We use ω0 as the unit of energy.In the same way as for polarons [1℄, two fundamen-tally di�erent kinds of orrelative behavior between theeletron and lattie subsystems an be distinguished forHH bipolarons. Adiabati orrelations are desribed by aneletron pair that instantaneously adjusts to the motionof the lattie deformation �eld. On the other hand, duringnonadiabati proesses, the eletrons temporarily detahfrom the lattie �eld.It is frequently assumed for U = 0 that the parameter
t/ω0 is su�ient to distinguish between the regime domi-nated by the nonadiabati orrelations from the one dom-inated by the adiabati orrelations. However, it is impor-tant to stress that this distintion should also aount forthe strength of the eletron-phonon oupling g/ω0. Thatis, the adiabati orrelations develop only for su�ientlystrong ouplings, whereas the weak-oupling limit, irre-spetively of t/ω0, involves purely nonadiabati dynamis[1℄. For a �xed t/ω0, the latter an always be reahed bydereasing g/ω0.One important ingredient of the bipolaron physis arelattie oarsening (disreteness) e�ets. The role of these



O. S. Bari²i¢, S. Bari²i¢: Bipolarons and polarons in the Holstein-Hubbard model: Analogies and di�erenes 3e�ets is determined by the eletron-phonon orrelationlength dbp. By analogy with the polaron ase [1℄, the dis-reteness of the lattie deformation pins small bipolarons(dbp ≈ a), whereas in the opposite limit of large bipolarons(dbp ≫ a), the ontinuum approximation an be invoked.3 Adiabati approximationIn the adiabati limit the eletron part of the bipolaronwave funtion behaves as if it ommutes with the lat-tie kineti energy (2), depending parametrially on time,through the lattie deformation,
|η(u)〉 =

∑

n,m

ηn,m c†n,↑c
†
m,↓|0〉 , (3)where, for the sake of brevity, the lattie deformation isdenoted by an N -dimensional vetor u ≡ {un}, with Nbeing the number of lattie sites (N → ∞).For the singlet spin on�guration, the two-eletron wavefuntion (3) satis�es ηn,m = ηm,n, whereas for the triplet itsatis�es ηn,m = −ηm,n. Furthermore, in the U → ∞ limitthe singlet solution beomes degenerate with the tripletsolution. Sine in the urrent, as well as in other works[13,20℄ no indiation of stable U = ∞ singlet bipolaronsis found, it is expeted that the triplet bipolarons are un-stable in the whole parameter spae of the 1D HH model.With appropriate normalization ∑n,m η∗

n,mηn,m = 1,the expetation value of the Hamiltonian (1) with respetto |η(u)〉 is obtained as
ĤAD = T̂ + ω0 u

2 + εAD(u) , (4)where the adiabati eletron energy εAD(u) is given bythe ground-state (i = 0) solution ε(0)(u) of
ε(i)(u) ηn,m = −2g (un + um) ηn,m + U δn,m ηn,n

−t (ηn+1,m + ηn−1,m + ηn,m+1 + ηn,m−1) . (5)The last two terms in equation (4) are funtions of u. Thismeans that they an be interpreted as the lattie potentialenergy, heneforth referred to as the adiabati potential
UAD(u). εAD(u) de�nes the hange of the lattie potentialenergy due to the adiabati orrelations, with respet tothe free-lattie ase. The exited-state solutions (i > 0) ofequation (5) may be used to analyze nonadiabati e�ets.3.1 Adiabati Holstein (U = 0) bipolaron vs. polaronFor U = 0, the eletron part of the adiabati wave fun-tion an be fatorized as a produt of single-eletron wavefuntions. Thus, the energy of the eletron subsystem isgiven by the sum of single-eletron energies ε

(i)
el , the latterbeing solutions of

ε
(i)
el ηn = −t (ηn+1 + ηn−1) − 2g un ηn , (6)with ηn the single-eletron wave funtion.

At this point, it is onvenient to make use [1℄ of thesum rule
un = Nel
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ũn = 1 , (7)where Nel is the number of eletrons in the system. Thissum rule follows from the fat that the homogenous q = 0lattie mode ouples only to the total eletron density [33℄,whih is �xed. Introduing ũn and Λ(i) = ε
(i)
el /Nelεp inequation (6) as resaled quantities,
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(ηn+1 + ηn−1) − 2 ũn ηn , (8)with parameters εp and λ given by εp = g2/ω0 and λ =

εp/t, the adiabati potential UAD(u) rewritten in termsof those quantities takes the form
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.(9)Here, the summation over i involves the lowest Nel ou-pied single-eletron states of equation (8).Equation (9) is general and valid for any Nel. In parti-ular, for the bipolaron (Nel = 2) and the polaron (Nel = 1)ase, only the ground (i = 0) state of the eletron spe-trum (8) ontributes to UAD(u). It is singly oupied forthe polaron and, due to the spin degeneray, doubly so forthe bipolaron. An important onsequene of this propertyis that UAD(u) for Nel = 2 exhibits the same behavior asfor Nel = 1 with four times larger εp and twie as large λ,
εp ↔ 4εp , λ ↔ 2λ , g ↔ 2g , t ↔ 2t . (10)Thus, the adiabati Holstein bipolaron problem an besimply mapped through (10) to the adiabati Holstein po-laron problem. This useful property has not been notedpreviously.The quantity in the brakets on the right hand sideof equation (9) depends only on one parameter, λ. Asknown from the polaron theory [34℄, λ de�nes the adia-bati eletron-phonon orrelation length (the polaron size),

dpol/a ≈ 1 + 2/λ. Using equation (10), one �nds that forthe same parameters the adiabati Holstein bipolaron isalways smaller than the polaron, i.e., dbp/a ≈ 1+1/λ. Thisalso means that the pinning e�ets due to the disretenessof the lattie �eld are stronger for bipolarons than for po-larons. In addition, the bipolarons are haraterized by adoubled lattie deformation in equation (7), whih rendersthem heavier than polarons.3.2 Nonadiabati orretions for U = 0While the simple mapping (10) exists between adiabatibipolarons and polarons, suh an analogy is absent for



4 O. S. Bari²i¢, S. Bari²i¢: Bipolarons and polarons in the Holstein-Hubbard model: Analogies and di�erenesnonadiabati orretions involving the exited states of theadiabati eletron spetrum (5). For polarons, the ground(i = 0) and exited states (i > 0) of the adiabati eletronspetrum are given by
εp Λ(i)(ũn, λ) , (11)whereas the bipolaron ase involves one- and two-eletronexitations,

2εp

[

Λ(i)(ũn, 2λ) + Λ(j)(ũn, 2λ)
]

. (12)The omparison of the two spetra in equations (11)and (12) reveals an important physial property: for thesame parameters the bipolaron is "more adiabati" thanthe polaron, beause the former is haraterized by a largergap ∆η in the eletron spetrum between the ground andexited states. In this respet, it is instrutive to onsidertwo opposite limits, the large and the small (bi)polaronlimit, orresponding to λ ≪ 1 and λ ≫ 1, respetively.For large adiabati polarons, dbp ≫ a, the gap in the ele-tron spetrum ∆η an be evaluated in the ontinuum ap-proximation [35,1℄, whih gives ∆pol
η = εp λ/4. Aordingto equations (11) and (12), for the same parameters afour times larger gap is obtained in the bipolaron ase,

∆bp
η = εp λ. In the small (bi)polaron limit, dbp ≈ a, thegap in the eletron spetrum is independent of λ, beingtwo times larger for bipolarons (∆bp

η = 2∆pol
η = 4εp). Forarbitrary λ, it an easily be veri�ed numerially that theratio ∆bp

η /∆pol
η lies between the two limiting behaviors dis-ussed here, 2 ≤ ∆bp

η /∆pol
η ≤ 4.3.3 Adiabati bipolarons for U 6= 0In the adiabati regime the main ontribution to the bipo-laron binding energy is desribed by the adiabati po-tential UAD(u), while the kineti part of the energy, aswell as nonadiabati orretions, ontributes muh less tothe total bipolaron binding energy. For this reason, someimportant properties of the adiabati bipolarons may beobtained simply by alulating the equilibrium lattie de-formation, orresponding to the minima of UAD(u). Theapproah that yields the bipolaron behavior from theseminima is hereafter referred to as the stati adiabati ap-proximation (SADA), re�eting the fat that only the adi-abati equilibrium point in the lattie on�guration spaeis being onsidered, while the dynamis are negleted.3.3.1 Small bipolaronsThe e�ets of the Hubbard repulsion on the formationof the small bipolarons have been disussed in numerousworks. For U = 0 and λ large, the pair of eletrons and theaompanying lattie deformation loalize to a single lat-tie site, forming a so alled S0 bipolaron [4,13,16℄. Withthe weak Hubbard repulsion swithed on, the ondensa-tion energy is given by ∆S0

bp ≈ 2εp − U . However, for astronger repulsion U & 2εp the eletrons tend to avoid
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∆S1

bp ≈ 4t2/U − εp/λ2 . (13)In fat, ∆S1
bp an easily be interpreted by starting fromthe U = ∞ limit. For U = ∞, plaing two small polaronsnext to eah other divides the energy gain assoiated withthe adiabati spreading of the small polaron by half. Thisrepulsive e�et is desribed by the 1/λ2 orretion to thesmall-bipolaron binding energy εp, i.e., by the seond termin equation (13). Returning to the �nite U ase, the S1bipolaron is stabilized for U . 4εp by the superexhangeenergy, given by the �rst term in equation (13).In Figure 1 the binding energy of the small bipolaron(λ = 2) is shown as a funtion of U/εp by urves withsymbols. The urves are normalized by the U = 0 valueof ∆bp. For λ = 2, the SADA transition in Figure 1 be-tween the S0 (irles) and S1 (squares) bipolarons oursfor U/εp ≈ 1.8. The seond SADA transition in Figure 1takes plae for U/εp ≈ 3.8, involving a transition between

S1 (squares) and S2 (diamonds) bipolarons. S2 denotes abipolaron onsisting of two weakly bound small polaronsat next-nearest neighbor sites. Inreasing U further, theSADA gives weakly overlapping small polarons at inreas-ing distanes (Si, i > 2), with a vanishing binding energy.By alulating the minima of the adiabati potential asa funtion of U to the leading orretion in 1/λ small, itmay be shown [38℄ that two polarons beome unbound fora ritial value of the Hubbard repulsion Uc. In partiu-lar, for 1/λ = 0 this value is given by Uc = 12 εp, with
Uc shifting towards larger values as λ dereases away fromthe atomi limit 1/λ = 0 [38℄.Beause of strong lattie oarsening e�ets, the S0 and
S1 bipolarons, orresponding to two minima (loal andglobal) of the adiabati potential UAD(u), are separated



O. S. Bari²i¢, S. Bari²i¢: Bipolarons and polarons in the Holstein-Hubbard model: Analogies and di�erenes 5by a substantial energy barrier. Consequently, at the tran-sition between di�erent Si bipolarons (i = 0, 1, . . .) theSADA ondensation energy ∆bp in Figure 1 exhibits apronouned singularity in its slope. This behavior shouldbe ontrasted to the large bipolaron ase dbp ≫ a dis-ussed in Setion 3.3.2, for whih the lattie oarseninge�ets are negligible and the SADA ondensation energy
∆bp behaves smoothly [see the λ = 1/2 ase in Figure 1℄.In general, kineti and nonadiabati ontributions areexpeted to smear any singular behavior of the exat on-densation energy ∆bp. Indeed, unlike in Figure 1, ∆bp al-ulated numerially by the RCSM in Setion 4 always ex-hibits a smooth rossover between di�erent Si bipolarons.3.3.2 Large bipolaronsThe problem of the large HH bipolaron has attrated muhless attention in the literature than has the problem of thesmall bipolaron. In the ontinuum approximation, appro-priate for dbp ≫ a, Uc = 2.5 εp has been reported [36,37℄as the ritial strength of the Hubbard repulsion abovewhih the adiabati bipolaron is unstable with respet toforming two separate adiabati polarons. This value hasbeen obtained by a variational tehnique involving a prod-ut of single-eletron wave funtions.Here, in the ontext of the SADA, the ondensationenergy of the large adiabati HH bipolaron is studied byalulating the exat minima of UAD(u), without assum-ing in advane any partiular funtional form of the adia-bati eletron wave funtion.While the behavior of the bipolaron ondensation en-ergy ∆bp in the small bipolaron limit 1/λ → 0 may beapproximately obtained [38℄ from the leading orretionsin 1/λ small, the general ase enompasses the summationof the whole 1/λ, 1/U expansion of the adiabati bindingenergy. Within the SADA, this summation is performednumerially, by using an iterative sheme proposed in ref-erene [4℄, supplemented with appropriate modi�ationsneessary to preserve numerial stability in the large bipo-laron limit. Following this proedure, the stability of largeadiabati bipolarons is established for muh larger valuesthan predited before.In Figure 1 the ondensation energy ∆bp of the largeadiabati polaron is shown as a funtion of U/εp (fullurve). Comparing ∆(U)/∆(0) for the small and largebipolaron ases (λ = 2 vs. λ = 1/2), one observes thatthe ondensation energy of the large adiabati bipolaronsdrops more slowly. This also means that the ritial valueof the Hubbard repulsion Uc for the bipolaron stabilityinreases as λ dereases, shifting Uc to muh larger values(Uc > 12εp). However, as it may be seen from Figure 1,irrespetively of λ, whih de�nes the size of the bipolaron,
∆bp is rapidly suppressed by U/εp, beoming exponen-tially small for U/εp & 4.Further insights into the formation of large bipolaronsas a funtion of the Hubbard repulsion U an be obtainedby examining the SADA lattie deformation. In Figure 2this deformation is plotted for λ = 1/2 and various valuesof U/2εp = i, 0 ≤ i ≤ 4. With inreasing U , the large
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Figure 2. The SADA lattie deformation of large bipolarons(λ = 1/2) as a funtion of U , showing the dissoiation of thebipolaron in the adiabati limit.bipolaron in Figure 2 progressively transforms into a pairof weakly bound large polarons at inreasing distane. Asmay be seen from Figure 2, the lattie deformation at theentral bipolaron site n = 0 is the largest for U/εp . 4. Onthe other hand, for U/εp & 4 the largest deformation isfound for non entral sites n 6= 0. A lose inspetion showsthat, for some values of U , the enter of the symmetryof the SADA lattie deformation is in fat between twolattie sites, e.g., between the n = 0 and n = 1 sitesfor U/2εp = 3 and U/2εp = 4 in Figure 2. The samesymmetry of the lattie deformation is found in the smallbipolaron limit for the S1 bipolarons.When ∆bp obtained by the SADA aquires small val-ues, orretions assoiated with the lattie kineti energyare deisive for the stability of the adiabati bipolaron.The results start to be even more intriguing when nona-diabati ontributions assume an important role. In thisontext, the interesting ase appears when one starts inthe U → ∞ limit with two nonadiabati polarons. By de-reasing U the two polarons ondense into a bipolaron,whih for U = 0 may be dominated by the adiabati dy-namis. In order to desribe aurately suh a kind ofrossovers involving a mixture of adiabati and nonadi-abati dynamis one has to rely on numerial approaheslike the RCSM.4 Numerial resultsIn Setion 3 the adiabati limit was disussed in termsof the SADA results. Beyond this, the appliation of theRCSM allows a dynamial quantum desription of bipo-larons as well as the extension of the urrent study to thewhole parameter spae.It is instrutive to start the numerial analysis with aomparison to other methods, when the latter are appli-able, so as to establish the auray of the RCSM. For
ω0 = t = g the value of the RCSM ground state (zero mo-mentum K = 0) energy is Ebp = −5.420 ω0, whih is loseto the pratially exat value of Ebp = −5.424 ω0 [13℄. Forthe same parameters, high auray (Ebp = −5.419 ω0) is



6 O. S. Bari²i¢, S. Bari²i¢: Bipolarons and polarons in the Holstein-Hubbard model: Analogies and di�erenesalso ahieved by a variational method desribed in refer-ene [6℄.4.1 Nonadiabati ontributionsThe di�erenes between the nonadiabati dynamis of bipo-larons and polarons beome evident by omparing thespetra for U = 0 through the saling given by equa-tion (10). For this purpose Figure 3 is used, with RCSMurves obtained by varying λ = λbp = 2λpol, while t =
tbp = tpol/2 is kept �xed. For the right panel of Figure 3the ratio t/ω0 is hosen to be muh larger than for theleft panel in order to ontrast the behavior obtained loseto the adiabati limit with the regime where the nonadia-bati e�ets play a signi�ant role. For the di�erent hoieof λ sales, both panels exhibit similar band-narrowing ef-fets. However, due to the very di�erent values of t/ω0,two di�erent physial mehanisms are involved.In Figure 3, the lowest bipolaron band is representedby the gray area, with boundaries de�ned by the K = 0and K = π states. This bipolaron band is ompared, usingthe saling in equation (10), to the energy of the lowestpolaron band, whose boundaries are given by the full thik
K = 0 and K = π urves. The dashed urve in Figure 3 istwie the energy of the polaron ground state, plotted for
λ = λbp and t = tbp. It de�nes the threshold energy forthe stability of the bipolaron K = 0 (ground) state.For λpol = 2λbp and tpol = 2tbp, in the absene ofnonadiabati ontributions, the bipolaron and the polaronbands in Figure 3 should be the same. However, the leftpanel (tpol = 2tbp = ω0) in Figure 3 learly shows a largerbandwidth of the polaron band, indiating that the nona-diabati ontributions are more e�ient in deloalizingthe polarons. As the derease of the adiabati gap in theeletron spetrum ∆η leads to an inreasing importane ofnonadiabati e�ets, the di�erenes between the bipolaronand the polaron band beome more pronouned towardsthe weak-oupling (left) side of the left panel in Figure 3(∆η . ω0). The explanation is quite simple. In nonadia-bati proesses the eletron is temporally detahed fromthe lattie deformation. Sine two eletrons have to workooperatively in order to nonadiabatially deloalize thebipolaron, it is not surprising that the polaron deloalizesnonadiabatially more e�iently through single eletronproesses.On the ontrary, for the large t/ω0 used in the rightpanel of Figure 3 (tpol = 2tbp = 64 ω0), the di�erenes be-tween dispersions of the polaron and the bipolaron bandsare hardly seen. In other words, the dynamis is almostompletely adiabati. The signi�ant band-narrowing inthe right panel of Figure 3 is governed by lattie oars-ening e�ets that beome stronger as λ inreases, ratherthan by the hange in the nature of the eletron-phononorrelations (i.e., adiabati vs. nonadiabati), as it is inthe left panel of Figure 3.The qualitative di�erene between the two (bi)polaronband-narrowing mehanisms in the two panels of Figure 3may be argued further from the behavior of the bipolaronbinding energy Ebp. This energy in Figure 3 orresponds
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K = 0 and K = π states, for the Holstein bipolaron (gray area)and polaron (full thik urves) are ompared as a funtion of
λpol = 2λbp for tpol = 2tbp = ω0 (left panel) and 64 ω0 (rightpanel) �xed (note di�erent λ and energy sales in two pan-els). The dashed urves are twie the RCSM polaron groundstate energy for λ = λbp, de�ning the energy threshold for thebipolaron stability. (ω0 is used as the unit of energy.)to the energy di�erene between the minimal energy oftwo free eletrons −4tbp and the bottom of the bipolaronbands. As one may observe, Ebp takes very di�erent valuesin the left and right panels of Figure 3. In partiular, thesmall (large) binding energy in the left (right) panel ofFigure 3 diretly indiates the small (large) gap in theadiabati eletron spetrum ∆η ∝ Ebp, disussed alreadyin onnetion with equations (11) and (12). For ∆η . ω0nonadiabati dynamis prevails, while ∆η & ω0 representsthe opposite, dominantly adiabati behavior.4.2 Bipolaron band strutureDepending on parameters, exited oherent bipolaron bandsmay emerge below the phonon threshold for the inoher-ent sattering. In fat, due to the energy onstraint in sit-uations when the low-frequeny oherent bands are su�-iently narrow, oherent bands an also be found above thethreshold energy. Namely, with narrow bands at the bot-tom of the spetrum, some parts of the spetrum above thephonon threshold may remain inaessible to inoherentphonon exitations that add ω0 (optial phonon energy)to the total energy of the system. Analogous behaviors ofthe polaron spetrum have been found in investigationsreported in referenes [40,41℄.In a manner similar to that disussed for the lowestband in onnetion with Figure 3, under the substitutionof parameters (10) any di�erenes between the exited po-laron and bipolaron bands in the U = 0 ase should beattributed to nonadiabati e�ets. Sine these di�erenesdo not bring any essentially new behavior and sine the po-laron band struture as a funtion of the oupling onstant
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g has been extensively reported upon previously [1,27,32℄,we turn instead to the role of the Hubbard repulsion.4.2.1 Relation to soft normal modesBy revealing exited bipolaron bands, the RCSM is able toprovide a detailed perspetive of various aspets of bipo-laron formation. The exited bands are assoiated withthe adiabatially softened phonon modes that move alongthe lattie with the bipolaron. Thus, by analogy with thepolarons [27℄, the exited bipolaron bands serve as �nger-prints of adiabati orrelations. Generally speaking, thestrongest adiabati orrelations should be expeted in thelow-frequeny part of the bipolaron spetrum, for whihthe orresponding lattie deformation is the slowest. Theabsene of the exited bipolaron bands below the phononthreshold therefore indiates that, for all frequenies, thedynamis is nonadiabati. Namely, the eletrons detahnonadiabatially from the phonon loud too frequentlyand the �utuations of the lattie at di�erent sites remainadiabatially unorrelated (non-softened) by eletrons. In-deed, in the weak-oupling regime (∆η < ω0) one always�nds only the lowest oherent bipolaron band below thephonon threshold.Due to the softening of the phonon modes, the bipo-laron band struture starts to be partiularly intriguingupon approahing the adiabati limit. More spei�ally,by varying U , the bipolaron band struture transformsfrom the polaron-like behavior at U = 0 [in the sense ofequation (10)℄ to the large U behavior, when the bipo-laron onsists of two weakly overlapping polarons sharingthe same enter of mass oordinate. This gradual trans-formation of the band struture is examined in detail inFigures 4-6.The four panels in Figure 4 show the SADA (equi-librium) lattie deformation un and the lowest four adia-bati (soft) normal bipolaron modes. The �rst two panelsin Figure 4 orrespond to the entry and exit values of theparameter U , as a funtion of whih the bipolaron bandstruture is plotted in Figure 5. The two remaining panelsin Figure 4 orrespond to the entry and exit values of theparameter U for whih the band struture is shown Fig-ure 6 and disussed in Setion 4.2.3 in the ontext of thelarge U limit.As in Figure 2, the dissoiation of the bipolaron as afuntion of U an easily be traked in Figure 4 from un.The parameter λ in Figure 4 is approximately twie aslarge as in Figure 2 (λ = 0.98 vs. λ = 1/2). Consequently,the bipolarons in Figure 4 exhibit signi�ant lattie oars-ening e�ets, being set by this partiular hoie of λ in theviinity of the rossover regime between the large and thesmall adiabati bipolarons.The normal adiabati modes of the bipolaron lattiedeformation �eld, shown in Figure 4, are obtained usingthe harmoni approximation for the adiabati potential
UAD in equation (9). They may be distinguished aord-ing to the number of nodes and their parity. Namely, themodes are even or odd under re�etion with respet tothe enter of the equilibrium lattie deformation at n = 0.
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Figure 4. (Color online) The SADA lattie deformation andthe lowest four (soft) normal modes as a funtion of U (λ =

0.98, t/ω0 = 200).Depending on the parameters used, the energies of themodes with di�erent parities may ross.Although alulated by breaking the translation sym-metry of the adiabati bipolaron problem, the normal modesin Figure 4 give a lear meaning to the internal strutureof the low-frequeny adiabati dynamis. That is, by on-sidering the relationship between the normal mode oor-dinates and the adiabati oordinate that orresponds to



8 O. S. Bari²i¢, S. Bari²i¢: Bipolarons and polarons in the Holstein-Hubbard model: Analogies and di�erenesthe translational bipolaron motion along the lattie, onemay distinguish between the loal dynamis orthogonalto the motion of the enter of mass and the translationalmotion of the enter of mass itself.4.2.2 Band struture for small UIn the small U regime, the main e�et of the Hubbard re-pulsion is to inrease the size of the bipolaron. For thisreason the bipolaron band struture in Figure 5 bearsmany resemblanes to the small to large polaron rossover[1,32℄ as λ is varied. Starting with narrow bands on the left(small bipolaron) side of Figure 5, as U is inreased thewidths and the distanes between various exited bandsbeome omparable. As U is inreased further the bandstruture on the right side of Figure 5 develops the largebipolaron behavior.The bipolaron bands in Figure 5 are given in terms of9 states with di�erent momenta K, K = m × π/8, with
0 ≤ m ≤ 8. All the energies are shifted by the ground stateenergy of the bipolaron. In order to simplify the analysis,additional bands below the phonon threshold assoiatedwith higher normal modes are not onsidered in Figure 5(e.g., N3, N4 modes shown in Figures 4a and 4b, andhigher modes).The detailed understanding of the band struture inFigure 5 involves a distintion between two basi e�ets[1,32℄. The �rst explains the bandwidths, and is relatedto the so alled Peierls-Nabarro (PN) barrier ∆PN . Theseond explains the hybridization between exited bandsand is related to the e�etive oupling between normalmodes.Regarding the role of the PN barrier, shifting the largeadiabati bipolaron aross the unit ell from its exat equi-librium position has a very small energeti ost ∆PN ≪
ω0. Namely, beause the lattie oarsening e�ets are sup-pressed for dbp ≫ a, the shape of the large bipolaron isalmost preserved at any point of the minimal energy pathfor the bipolaron translation that onnets the exat min-ima of the adiabati potential UAD(u). This e�et may beobserved in the frequeny of the pinning P mode, whihvanishes in the ∆PN → 0 limit. Consequently, the largebipolaron moves along the lattie almost as a free parti-le. On the other hand, due to the lattie disreteness, theshape of the small bipolaron hanges substantially withinthe unit ell along the minimal energy path for the trans-lation. Therefore, for small bipolarons the PN barrier islarge, ∆PN ≫ ω0, whih results in the very narrow bipo-laron bands in the spetrum observed in the left part ofFigure 5. Their positions in the spetrum orrespond tothe exitation energies of the normal modes shown in Fig-ure 4. At the left side of Figure 5 the bands are denotedaordingly, e.g., the band assoiated to the simultaneousexitation of the pinning and breather mode is denoted by
BP .The seond e�et that requires onsideration is the ef-fetive oupling between the normal modes. The lowesteven (breather) mode, denoted by B in Figures 4a and4b, involves vibrations of the bipolaron size, whereas the
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Figure 5. (Color online) The bipolaron band struture as afuntion of U (t/ω0 = 200, g = 14, λ = 0.98). The lowest andexited bands orresponding to the exitations of the pinning
P and breather B normal modes are shown.lowest odd (pinning) mode, denoted by P , displaes theenter of mass. The hange in the shape of the small bipo-laron along the minimal energy path results in a stronge�etive oupling between the P and the B mode [1,32℄.This explains the strong hybridization of the exited bandsin the entral part of Figure 5.For the large bipolarons in the right part of Figure 5,gaps between various bands (assoiated with di�erent ki-neti energies of the translational motion) lose as ∆PN →
0, whereas the hybridization between exited bands in-volving di�erent degrees of freedom (e.g., P and B) be-omes weak. B on the right side of Figure 5 denotes the
K = 0 state at the bottom of the band assoiated withthe exitation of the breather mode. The position of this
K = 0 state in the spetrum is approximately given (up tothe kinemati e�ets [35℄) by the frequeny of the breather
B mode of the large bipolaron, shown in Figure 4b.4.2.3 Band struture for large UTurning now to large U , it is onvenient to disuss thebipolaron properties in terms of two overlapping polarons.Starting with Figures 4, instead of B for breather, Pfor pinning, et., it is useful to introdue a new ate-gorization of the normal modes, NR, Nr, Nb, Na. Here,
NR and Nr an be understood as bonding and antibond-ing ombinations of the two pinning modes orrespond-ing to the two overlapping polarons. The normal mode
NR is odd and displaes the enter of the bipolaron mass,whereas the mode Nr is even and desribes vibrations ofthe distane between two polarons. Similarly, the next twonormal modes Nb and Na may be understood as bond-ing (even) and antibonding (odd) ombinations of twobreather modes, representing the in phase and antiphasevibrations of the polarons' sizes.
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Figure 6. (Color online) The large bipolaron band struturefor large U (t/ω0 = 200, g = 14, λ = 0.98, as in Figure 5).Beside the bands assoiated to the translation motion of thebipolaron with zero point motion of the normal modes, thebands with exited normal modes Nr and Nb are shown aswell.The bipolaron band struture for large U is shownin Figure 6. Steps in gray shading represent the inreasein the number of overlapping bands in the spetrum. Asin Figure 5, all energies are shifted by the ground stateenergy. The band boundaries orrespond to the K = 0(full urves) and K = π (dashed urves) states. Whihof the two K states atually de�nes the bottom and thetop of the orresponding band depends on the parity ofthe states. For example, the ground K = 0 and the lowest
K = π state in Figure 5 are even, and de�ne the lower andupper boundaries of the lowest band, respetively. A smallgap (white area) separates this lowest band from the �rstexited band that starts with the K = π state of odd par-ity. In the absene of lattie disreteness e�ets, the gapbetween the lowest two bands loses, and the dispersion ofthe bipolaron states is given simply by Ebp(K) ∝ K2/mbp,wherembp denotes the bipolaron e�etive mass. The statesassoiated with the momenta K = π and K = 2π (orre-sponding to the NR oordinate) are represented separatelyin Figure 6.Unlike in Figure 5, where the e�etive mass mbp ofthe bipolaron dereases on inreasing the bipolaron sizewith U , in Figure 6 U has the opposite e�et. Namely, thebandwidth of the lowest band learly dereases with U ,indiating that the polaron pair beomes heavier as themutual distane between the polarons inreases.Beside the bands assoiated with the inreasing kinetienergy of the joint motion of two polarons along the lat-tie, in Figure 6 additional bands assoiated to two evennormal modes Nr and Nb are shown, with the K = 0states denoted aording to the nature of the exitationinvolved. In partiular, it may be seen from the K = 0state denoted by Nr in Figure 6 that the frequeny of the
Nr mode dereases with U . This behavior is expeted onthe basis that the restoring fore for the vibrations of the

distane between two polarons vanishes when the bipo-laron dissolves into two unbound polarons.It is also worth noting that, by sharing the same parity,the NrNr state (double exitation of the Nr mode, K =
0) and the Nb state (single exitation of the Nb mode,
K = 0), antiross in the entral part of Figure 6. Thatis, the K = 0 state denoted by Nb on the left side ofFigure 6 hanges its nature, being dominantly a doubleexitation of the Nr mode on the right side of Figure 6. Inother words, the hybridization between bands assoiatedto the Nb and Nr exitations of the bipolaron ours inFigure 6. However, in ontrast to the hybridization dueto lattie oarsening e�ets in Figure 5, in Figure 6 oneobserves only a weak e�et of the kinemati [35℄ origin,without abrupt hanges in the dispersion properties.4.3 Light bipolarons with signi�ant ondensationenergiesWhile the adiabati limit ∆η ≫ ω0 involves large lattiedeformations that make the bipolaron heavy, the weak-oupling limit orresponds to the opposite situation. Inthis respet, it is interesting to onsider whih values of
U give the most stable, light bipolaron solutions. The ex-istene of light bipolarons with signi�ant ondensationenergies has attrated partiular attention in the ontextof bipolaron superondutivity [42℄ and �ndings that in-diate the importane of the eletron-phonon interationin high-Tc materials [43℄.In the HH model, one �nds [13,3,6℄ that light bipo-larons with signi�ant binding energies exist when the rel-evant energy sales governing the bipolaron dynamis areomparable, t ∼ ∆η & ω0. It is emphasized here that thisspei� regime of parameters orresponds to the rossoverbetween the weak-oupling limit and the regime of smallbipolarons haraterized by strong adiabati orrelationsand lattie oarsening e�ets. In other words, light bipo-larons with signi�ant binding energies involve a subtlebalane of parameters.Figure 7a shows the RCSM bipolaron e�etive mass
mbp for three values of the Hubbard repulsion, U/ω0 =
0, 2, 4. The polaron e�etive mass mpol (dashed urve) isplotted for omparison. A weak renormalization of mpolindiates the weak-oupling regime for the polaron ase,i.e., the dynamis are fully nonadiabati. On the otherhand, in ontrast to polarons, the bipolaron spetrum (notshown) exhibits exited bands below the phonon thresholdfor the set of parameters investigated in Figure 7, meaningthat the adiabati orrelations are signi�ant.The RCSM bipolaron ground-state energy (full urves)is shown in Figure 7b for the same set of parameters usedin Figure 7a. In the small (S0) bipolaron limit (εpλ ≫
εp ≫ ω0 and εp & U), orresponding to the right side ofFigure 7b, the ground-state energy approahes asymptot-ially the values plotted by the thin dashed urves and isgiven by

Ebp ≈ −4εp − εp/λ2 + U . (14)
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Figure 7. (Color online) a) The RCSM bipolaron e�etivemass for U/ω0 = 0, 2, 4. b) The RCSM bipolaron ground-stateenergy for the same parameters.The �rst term is the energy of two eletrons loalized atthe same site (S0 bipolaron), while the seond term isthe energy gain due to the adiabati spreading of the S0bipolaron to the two neighboring sites. Upon substitutionof parameters (10), the �rst two terms in equation (14)represent the energy of the small adiabati polaron al-ulated to the leading order in small 1/λ. The e�ets ofsmall Hubbard repulsion in equation (14) are taken with-out 1/λ orretions, as if two eletrons were permanentlysharing the same lattie site.In the rossover towards weak ouplings (entral partof Figure 7b), signi�ant deviations from equation (14)start to our. Namely, with dereasing g and/or inreas-ing U , the spreading of the lattie deformation rendersbipolarons lighter and simultaneously suppresses the gapin the adiabati eletron spetrum ∆η. Suh suppressionintrodues signi�ant nonadiabati orrelations.The range of nonadiabati orrelations inreases rad-ially in Figure 7b for states lose to the threshold en-ergy for the bipolaron stability, when the bipolaron dis-solves nonadiabatially into two polarons. The desriptionof suh weak and long-ranged nonadiabati orrelations isquite approximate within the RCSM (and other applia-

ble methods) and small inauraies beome notable for
∆bp → 0. In partiular, instead of approahing asymptot-ially the thik dashed ∆bp = 0 urve from below in Fig-ure 7b, the RCSM ground-state energy urve for U = 4ω0intersets it. Yet, for this partiular regime of parameters,the expeted relation mbp ≈ 2mpol is obeyed in Figure 7a.This result shows that the overall RCSM piture of thebipolaron dissoiation for ∆bp → 0 is semi-quantitativelyorret.Table 1. Bipolaron RCSM ondensation energy as a funtionof U for two values of the e�etive mass. All the energies arein units of ω0 (t = 2.5 ω0).

mbp/mel = 10 U = 0 U = 2 U = 4

g 1.44 1.58 1.72
∆bp 0.71 0.38 0.2

mbp/mel = 20 U = 0 U = 2 U = 4

g 1.54 1.66 1.8
∆bp 1.12 0.58 0.34For the regime t ∼ ∆η ∼ ω0, the relationship betweenthe ondensation energy ∆bp and the e�etive mass mbpis further eluidated in Table 1. One observes that, for agiven e�etive mass, the ondensation energy monotoni-ally dereases with U . This means that the most favorableonditions for the formation of very light HH bipolaronswith large ondensation energies are ahieved when theHubbard repulsion is negligible.5 Entropy onsiderationsIn the HH model the e�etive interation between indi-vidual bipolarons is repulsive [13℄. Therefore, assuming apositive ondensation energy ∆bp > 0, the eletrons tendto ondense in pairs. A naive expetation in suh irum-stanes is that the majority of harge arriers ondenseinto bipolarons up to temperatures omparable to ∆bp.However, the entropy of the eletron-phonon system de-pends on the density of harge arriers and the ratio ofthe onentrations of polarons and bipolarons in the sys-tem exhibits a more intriate behavior. Therefore, whilethe single polaron physis may be invoked for the dilute

∆bp < 0 limit, the bipolaron problem ∆bp > 0 requires ad-ditional onsiderations. That is, in the dilute limit, even asmall temperature T an drive the system from the bipo-laroni ground state (T = 0) to the polaron phase beausethe latter is favored by the gain in the free energy throughthe inrease of the entropy S. This fat is frequently over-looked and, instead, only the binding energy is used toestimate the relative onentrations of polarons and bipo-larons.In this onnetion it is instrutive to onsider the small(bi)polaron limit, for whih the length of loal eletron-phonon orrelations d redues to just one lattie site, d/a →
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1. In this limit, the analysis is onsiderably simpli�ed be-ause of the vanishing overlaps between bipolarons andpolarons, while the Pauli exlusion priniple prohibits thedouble oupany of lattie sites by eletrons with thesame spin. If there are N lattie sites, the number of per-mutations of plaing two eletrons involved in small po-larons on the lattie is N(N − 1)/2, whereas the smallbipolaron an be plaed at N di�erent sites. It followsthat the gain in entropy of forming two polarons inreaseslogarithmially with the system size S ∼ ln(N). The ex-ited states of the bipolaron do not play a fundamentalrole here, sine the number of them is �nite, independentof N and given approximately by dbp∆bp/aω0.For a given total harge onentration c per site theaverage onentration per site of small bipolarons cbp andthe spin-degenerate onentrations of small polarons c↑↓whih satisfy c = 2cbp + c↑ + c↓, an be expressed by [44℄

2c↑(1 − eβ∆bp) = 1 − (1 − c)

√

1 +
c(2 − c)

(1 − c)2
eβ∆bp , (15)with β being the inverse temperature. Although derivedpreviously [44℄, some important aspets of equation (15)remain to be emphasized. In partiular, for any �nite β inthe dilute limit c → 0 of equation (15), all the harge isassigned to the polarons [45℄,

2c↑ ≈
1 − (1 − c)(1 + c eβ∆bp)

(1 − eβ∆bp)
≈ c . (16)With the inrease of the total harge onentration c, theratio c↑/c rapidly dereases provided that β∆bp is large.For example, for β∆bp = 10 and c = 0.05 the ratio cbp/cis lose to 0.97. Yet, for smaller ondensation energies like

β∆bp = 5, large relative values of bipolaron onentration
cbp/c > 0.8 are obtained for c > 0.2. Thus, the observationof bipolarons in the dilute limit is possible only for lowenough temperatures β∆bp ≫ 1. Otherwise, only polaronswill be observed.In general, for ∆bp > 0 and dbp arbitrary, overlappingpolarons and bipolarons are simultaneously present in thesystem, whih ompliates the estimation of their ratio asa funtion of doping and temperature. Nevertheless, thefree energy gain related to the formation of two polaronsinstead of the bipolaron is large whenever the orrelationlength satis�es dbp/a ≪ c−1.6 SummaryThe urrent work provides a thorough examination of thelow-frequeny properties that haraterize the formationof bipolarons within the 1D Holstein-Hubbard model. Par-tiular attention is devoted to the analogies and di�ereneswith respet to polarons, sine the properties of these twokinds of quasipartiles are expeted to govern the behaviorof the eletron-phonon system in the dilute limit.For both, the bipolarons and the polarons, the deepdihotomy in the eletron-phonon orrelations is funda-mentally the same, i.e., adiabati vs. nonadiabati. The

�rst interesting observation along these lines is that for
U = 0 the adiabati bipolarons and polarons exhibit thesame spetrum under the simple saling of parameters,derived here in equation (10). It is next argued that, for agiven set of parameters, bipolarons are always more adia-bati than polarons. This allows some easy preditions ofthe bipolaron behavior using the already known polaronbehavior.As a funtion of U , two basi limiting behaviors maybe distinguished. For U small, the repulsion between ele-trons inreases the bipolaron size and, depending of pa-rameters, one may observe a small to large bipolaron rossoverthat is very similar to the small to large polaron rossoverwhen the polaron size is varied through λ = g2/t ω0. For
U large, the bipolaron may be disussed in the pitureof two overlapping polarons that move together along thelattie. As shown here, detailed aspets of the small andlarge U behavior may be easily understood from the bipo-laron band struture. The latter, inluding the previouslyunreported exited bands, is alulated by the RCSM, amethod that has previously been suessfully applied tothe polaron problem. As for polarons, the exited bipo-laron bands are assoiated with the adiabatially softenedphonon modes of the moving lattie �eld. When the weak-oupling regime is ahieved, the softening e�ets are sup-pressed ompletely by the nonadiabati dynamis and thebipolaron spetrum below the phonon threshold involvesonly the lowest band, just as in the polaron ase.For weak eletron-phonon ouplings the bare intera-tion between two eletrons an be approximated by aninstantaneous e�etive interation (the frequeny depen-dene of the phonon propagator may be negleted). Con-sequently, it may be determined that the eletron pairbinds for U . 2εp. In the adiabati limit, due to retar-dation e�ets assoiated with the lattie, the bipolaronondensation energy ∆bp remains positive for large valuesof U . However, for U & 4εp, ∆bp stays small in the physi-ally relevant part of the parameter spae. This propertyis independent of the bipolaron size, haraterizing boththe small and the large adiabati bipolarons.Partiularly interesting is the behavior of small lightbipolarons, whose ondensation energy is omparable tothe bare phonon energy ω0. Under these onditions, one�nds that a �ne balane is ahieved between the adiabati,nonadiabati, and lattie oarsening e�ets. The role ofthe Hubbard repulsion is to derease the e�etive mass
mbp and to suppress ∆bp. In partiular, for �xed mbp,
∆bp dereases monotonially with U . This implies thatthe light bipolarons are most strongly bound when theHubbard repulsion is negligible.Within the HH model, the e�etive repulsion betweenindividual bipolarons suppresses the phase separation atlow harge densities. Yet, the onditions under whih astrong fration of bipolarons an be observed are severelyrestrited by the temperature and total harge onentra-tion. For low temperatures β∆bp ≪ 1, the relative onen-tration of bipolarons and polarons hanges in favor of theformer with inreasing total harge onentration. On theother hand, for a given �nite temperature and a vanishing
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