Pregled bibliografske jedinice broj: 581918
Experiments on Hybrid Corpus-Based Sentiment Lexicon Acquisition
Experiments on Hybrid Corpus-Based Sentiment Lexicon Acquisition // Proceedings of the Workshop on Innovative Hybrid Approaches to Processing Textual Data, 13th Conference of the European Chapter of the Association for Computational Linguistics
Avignon: EACL, 2012. str. 1-9 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 581918 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Experiments on Hybrid Corpus-Based Sentiment Lexicon Acquisition
Autori
Glavaš, Goran ; Šnajder, Jan ; Dalbelo Bašić, Bojana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the Workshop on Innovative Hybrid Approaches to Processing Textual Data, 13th Conference of the European Chapter of the Association for Computational Linguistics
/ - Avignon : EACL, 2012, 1-9
Skup
13th Conference of the European Chapter of the Association for computational Linguistics
Mjesto i datum
Avignon, Francuska, 23.04.2012. - 27.04.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
sentiment leksikon; hibridnost; metode temeljene na korpusu
(sentiment lexicon; hybrid; corpus-based)
Sažetak
Numerous sentiment analysis applications make usage of a sentiment lexicon. In this paper we present experiments on hybrid sentiment lexicon acquisition. The approach is corpus-based and thus suitable for languages lacking general dictionarybased resources. The approach is a hybrid two-step process that combines semisupervised graph-based algorithms and supervised models. We evaluate the performance on three tasks that capture different aspects of a sentiment lexicon: polarity ranking task, polarity regression task, and sentiment classification task. Extensive evaluation shows that the results are comparable to those of a well-known sentiment lexicon SentiWordNet on the polarity ranking task. On the sentiment classification task, the results are also comparable to SentiWordNet when restricted to monosentimous (all senses carry the same sentiment) words. This is satisfactory, given the absence of explicit semantic relations between words in the corpus.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
036-1300646-1986 - Otkrivanje znanja u tekstnim podacima (Dalbelo-Bašić, Bojana, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb