
1 

*** DRAFT *** 
August 17, 2009 

 

 

Method of and system for blind extraction of more pure components than 

mixtures in 1D- and 2D-NMR spectroscopy and mass spectrometry by 

means of combined sparse component analysis and detection of single 

component points  

 

TECHNICAL FIELD  

 

[0001] The present invention relates to a computer-implemented method for data 

processing for the purpose of blind extraction of more pure components than mixtures 

recorded in the fields of 1D- and 2D-NMR spectroscopy and mass spectrometry. Specifically, 

the invention relates to the use of the sparse component analysis (SCA) and the detection of 

single component points. Extracted pure components are used for identification of compounds 

in chemical synthesis, food quality inspection or pollution inspection i.e. environment 

protection, identification and characterization of compounds obtained from natural sources 

(microorganisms, plants and animals), or in instrumental diagnostics – determination and 

identification of metabolites and biomarkers present in biological fluids (urine, blood plasma, 

cerebrospinal fluid, saliva, amniotic fluid, bile, tears, etc.) or tissue extracts. 

 

STATE OF THE ART 

 

[0002] In a number of applications it is of interest to extract pure compounds from the 

collections of their linear combinations also called mixtures. Quantification and identification 

of the components present in the mixture is a traditional problem in NMR, IR, UV, EPR and 

Raman spectrosopcy, mass spectrometry, etc. Identification of the spectra of mixtures 

proceeds in majority of the cases by matching the mixture's spectra with a library of reference 

compounds. This approach is ineffective with the accuracy strongly dependent on the library's 

content of the pure component spectra. In addition to that, for a number of compounds 

isolated from natural sources or obtained in proteomics- and metabolomics-related studies 

there is no library of pure components available yet.  
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[0003] As opposed to the previous library-based approach it has been repeatedly 

demonstrated over the last ten years the possibility to separate mixture's spectra into pure 

component spectra employing the methodology known as blind source separation (BSS) that 

uses only the measurements of the mixture's spectra. Two widely spread methods in this 

domain are independent component analysis (ICA) and nonnegative matrix factorization 

(NMF). ICA belongs to group of statistical methods for solving blind linear inverse problems. 

Assumptions upon which the ICA algorithms are built are that unknown pure components are 

statistically independent and non-Gaussian, as well as that the number of linearly independent 

mixtures is greater than or equal to the number of pure components. NMF belongs to the 

group of algebraic methods for solving linear inverse problems. It also requires that the 

number of linearly independent mixtures is greater than or equal to the number of pure 

components as well as that pure components are nonnegative and sparse. Nonnegativity 

requirement and sparseness requirement are not satisfied simultaneously in a majority of 

spectroscopic applications. The general principle of blind extraction of pure components 

employing the BSS approach is schematically shown in Figure 1 that will be discussed below. 

 

[0004] One of the most known ICA algorithms is described in the patent US5706402 (B2), 

patent application WO 9617309 (A), as well as in the paper: A. J. Bell and T. J. Sejnowski. 

An information-maximization approach to blind separation and blind deconvolution. Neural 

Computation; vol. 7, pp.1129-1159, 1995. Reference literature for the field of blind source 

separation and independent component analysis are: A. Hyvärinen, J. Karhunen, E. Oja. 

Independent Component Analysis, John Wiley, 2001; A. Cichocki, S. Amari. Adaptive Blind 

Signal and Image Processing, John Wiley, 2002.   

 

[0005] We point out here that two assumptions made by standard BSS methods: (i) the 

number of linearly independent mixtures is greater or equal to the unknown number of pure 

components; (ii) the pure comoponents are statistically independent, are not easily and always 

met in real world applications in spectroscopy and spectrometry. The first assumption implies 

that concentrations of the pure components in different mixtures are different. This is not 

always easy to meet in practice. Therefore a methodlogy for blind decomposition of pure 

components from as few mixtures as possible is of great practical importance. The second 

assumption implies a small level of overlapping between the pure components. This is known 

not to be the case in a number of occasions. Few examples include 
1
H NMR spectroscopy, 

EPR spectroscopy, UV and IR spectroscopy, but also homo- and heteronuclear 2D NMR 
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spectroscopy of complex chemical compounds and biomolecules such as proteins, enzymes, 

glycoproteins, nucleic acids, etc.  

 

[0006] As described below in paragraphs, [0008]-[0013], BSS methods, mostly ICA, are used 

to extract pure components from the plurality of the spectroscopic or spectrometric signals. In 

a number of occasions it is emphasized that statistical independence among the pure 

components is not a correct assumption in spectroscopy and spectrometry. What is in 

common to the BSS methods to be elaborated is that number of linearly independent mixtures 

is required to be greater than or equal to the unknown number of pure components.  

 

[0007] Review of application of ICA in signal processing for analytical chemistry is given in: 

G. Wang, Q. Ding, Z. Hou, "Independent component analysis and its applications in signal 

processing for analytical chemistry," Trends in Analytical Chemistry, vol. 27, No. 4, 368-376, 

2008.  

 

[0008] The BSS based approach to blind decomposition of the NMR spectra is presented in: 

D. Nuzillard, S. Bourg and J.-M. Nuzillard, "Model-Free Analysis of Mixtures by NMR 

Using Blind Source Separation," Journal of Magnetic Resonance 133, 358-363, 1998; D. 

Nuzillard, J.-M. Nuzzilard, "Application of Blind Source Separation to 1D and 2D Nuclear 

Magnetic Resonance Spectroscopy," IEEE Signal Processing Letters, vol. 5, No. 8, 209-211, 

1998; K. Stadlthanner, et al. "Separation of water artifacts in 2D NOESY protein spectra 

using congruent matrix pencil," Neurocomputing 69, 497-522, 2006.  Employed BSS 

methodologies assumes: (i) that the number of linearly independent mixtures is greater or 

equal to the unknown number of pure components; (ii) the pure comoponents are statistically 

independent. Statistical independence assumption has been relaxed in: W. Naanaa, J.-M. 

Nuzzilard, "Blind source separation of positive and partially correlated data," Signal 

Processing 85, 1711-1722, 2005. However it is still required that the number of linearly 

independent mixtures is greater than or equal to the unknown number of pure components.  

 

[0009] The use of ICA and mean filed ICA in blind decomposition of the signals in gas 

chromatography-mass spectrometry (GC-MS) is elaborated respectively in: X. Shao, G. 

Wang, S. Wang, Q. Su, "Extraction of Mass-Spectra and Chromatographic Profiles from 

Overlapping GC/MS Signal with Background," Analytical Chemistry 76, 5143-5148, 2004; 

G. Wang, W. Cai, X. Shao, "A primary study on resolution of overlapping GC-MS signal 
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using mean-field approach independent component analysis," Chemometrics and Intelligent 

Laboratory Systems 82, 137-144, 2006. The later reference elaborates a method for blind 

decomposition of statistically dependent spectrometric signals. However, it is still required 

that the number of linearly independent mixtures is greater than or equal to the unknown 

number of pure components. 

 

[00010] Blind decomposition of the EPR mixture spectra is introduced in: J. Y. Ren, et al., 

"Free radical EPR spectroscopy analysis using blind source separation," Journal of Magnetic 

Resonance 166, 82-91, 2004. The standard ICA algorithm (FastICA) has been applied for 

blind separation of the EPR spectra. In the following reference it has been however realized 

that pure components in EPR spectroscopy are not statistically independent as well as that 

EPR spectra are sparse: C. Chang et al., "Novel sparse component analysis approach to free 

radical EPR spectra decomposition," Journal of Magnetic Resonance 175, 242-255, 2005. 

Sparseness has been used to cope with statistical dependence problem among the pure 

components and novel contrast function that measures sparseness of the EPR spectra is 

proposed in this reference. However, the number of mixtures is still required to be greater 

than or equal to the number of pure components.  

 

[00011] The use of latent variable analysis, specifically non-negative ICA, for blind 

decomposition of Raman spectra is elaborated in: V. A. Shashilov et al., "Latent variable 

analysis of Raman spectra for structural characterization of proteins," Journal of Quantitative 

Spectroscopy & Radiative Transfer 102, 46-61, 2006. Non-negative ICA took into account 

non-negativity of the variables in the assumed linear mixture model but still the number of 

mixtures was required to be greater or equal to the unknown number of pure components.  

 

[00012]  ICA has been applied to IR spectral data analysis in: J. Chen, X. Z. Wang, "A New 

Approach to Near-Infrared Spectral Data Analysis Using Independent Component Analysis," 

J. Chem. Inf. Comput. Sci. 41, 992-1001, 2001. It is however known that pure components in 

the spectral domain are statistically dependent: J. M. P. Nascimento, J. M. Bioucas Dias, 

"Does Independent Component Analysis Play a Role in Unmixing Hyperspectral Data?," 

IEEE Transactions on Geoscience and Remote Sensing 43, 175-187, 2005. Since statistical 

independence among the pure components is the obligated condition for the ICA to work, the 

ICA approach to IR spectra decomposition has limited accuracy. In addition to that, the 
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number of spectral measurements (mixtures) is still required to be greater than or equal to the 

unknown number of pure components.  

 

[00013] Paragraphs, [00014]-[00032], discuss patents and patent applications related to BSS 

concepts that fall into two categories: those that are claimed for applications in spectroscopy 

and spectrometry and those that solve the BSS problem using two mixtures only. The 

methods of the first category still require the number of mixtures to be greater than or equal to 

the number of pure components. The methods of the second category are based on 

assumptions made on the structure of the source signals that are specific to application 

domain (voice signals) what disables their applicability in the fields of spectroscopy and 

spectrometry. 

 

[00014] The US patent application 20040111220 "Methods of decomposing complex data" 

presents a method for blind decomposition of the mixture matrix that is a statistically based 

data mining technique. It claims applications in spectroscopy, spectrometry, genomics, 

proteomics, etc. It however requires the number of mixtures to be greater than the number of 

the unknown components. This is evident at the first stage of the algorithm where principal 

component analysis (PCA) is used to remove outlier and noisy components from data. This is 

done by inspecting eigenvalues of the data covariance matrix wherein the overall number of 

eigenvalues equals the number of mixtures. Thus, this method can not work when number of 

mixtures is smaller than number of pure components.  

 

[00015] The US patent application 20070252597 "Magnetic resonance spectroscopy with 

sparse spectral sampling and interleaved dynamic shimming" is related to 4D (three spatial 

and one spectral dimension) magnetic resonance spectroscopy and is characterized by sparse 

sampling across spectral dimension. Here sparseness of the components is a consequence of 

the multidimensionality of the data, i.e. sensing device.  

 

[00016] The patent application WO2007138544 "Coding and decoding: seismic data 

modeling, acquisition and processing" presents a method for blind decomposition of seismic 

data. In said application uBSS problem is converted to determined problem generating new 

equations by means of higher order statistics. This is however specific for the seismic data 

processing domain only. 
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[00017] The patent application CN1932849 "Initial method for image independent component 

analysis" exploits sparseness of the data in wavelet domain in order to obtain more accurate 

estimate of the mixing matrix. The estimate of the mixing matrix is then used as the initial 

condition for standard ICA algorithms. Thus, said application is essentially related to even- or 

over-determined BSS problems that require the number of mixtures to be greater than or equal 

to the number of pure components. 

 

[00018] The patent application WO2007112597 "Blind extraction of pure component mass 

spectra from overlapping mass spectrometric peaks" is related to blind extraction of the pure 

components from recorded multicomponent gas chromatography-mass spectrometric signals 

(mixtures) by means of entropy minimization approach. It also estimates the unknown 

number of the pure components based on the ranking of the singular values of the sample data 

covariance matrix and discarding the small singular values that are attributed to chemical 

noise. Thus, said application ultimately requires the number of mixtures to be greater than the 

unknown number of pure components.  

 

[00019] The US Patent 7,295,972 "Method and apparatus for blind source separation using 

two sensors" is related to a novel algorithm for blind extraction of multiple source signals 

from two mixtures only. The method transforms mixtures into frequency domain and employs 

the strategy that is similar to famous DUET algorithm (Blind Separation of Disjoint 

Orthogonal Signals: Demixing n sources from 2 mixtures, by A. Jourjine, S. Rickard, and O. 

Yilmaz, in Proc. Int. Conf. on Acoust., Speech, Signal Processing, 2000, vol. 5, pp. 2985-

2988) where specific assumption on disjoint orthogonality is made. The requirement of this 

assumption is that only one source signals exist at the point in the time-frequency plane. This 

assumption is very restrictive and seems to be approximately true for the voice signals only. 

Thus said method is not applicable to the field of spectroscopy and spectrometry where pure 

components exist simultaneously in time and frequency (few examples include 
1
H NMR and 

EPR signals).  

 

[00020] The US Patent 7,280,943 "Systems and methods for separating multiple sources 

using directional filtering," is related to semi-blind extraction of multiple source signals from 

one or more received signals. The method is semi-blind because it assumes that each source 

signals can be represented by a set of known basis functions and directional filters that 

incorporate prior knowledge on the type of the sources and their directions of arrival. The last 
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assumption surely does not hold when spectroscopy and spectrometry are considered as 

application domains. This is because the signals arising in spectroscopy and spectrometry do 

not have spatial structure, i.e. there are no distinct spatial locations to which the pure 

component signals can be associated and there are no distinct spatial locations of the receiving 

sensors (the multiple mixtures are acquired over different time slots or different wavelengths).   

 

[00021] The US Patent 7,010,514 "Blind signal separation system and method, blind signal 

separation program and recording medium thereof" presents a solution of the BSS problems, 

including uBSS problem, using probabilistic approach known as maximum likelihood (M. S. 

Lewicki et. al., "Learning Overcomplete Representations," Neural Computation, vol. 12, pp. 

337-365, 2000.). It is assumed in the patent that the number of sources (also called pure 

components) is known. This is a first significant limitation of said patent. Probabilistic 

maximum likelihood approach implies that prior distribution of the unknown pure 

components is known in order to obtain the learning equation for the unknown mixing matrix. 

Because related uBSS problem can be solved only if sources have proper degree of sparseness 

this implies that problem must be transformed into the basis with enough degree of 

sparseness. Then, in order to obtain mathematically tractable learning rule for the mixing 

matrix, the Laplacian distribution is assumed for the prior distribution of the sources in the 

given basis. This is a second significant limitation of said patent. In practice we can not 

dictate distribution of the sources in the chosen basis because the number of available bases is 

limited and most frequently used basis, such as Fourier or wavelet basis, do not represent all 

types of signals with the same degree of sparseness. Therefore assumed Laplacian distribution 

of the sources will in reality deviate from the true distribution and this will be the source of 

errors in estimation of the mixing matrix.  

 

[00022] The US Patent 6,944,579 "Online blind source separation," aims to extract multiple 

source signals from two mixtures only. The method transforms mixtures into time-frequency 

domain and employs the strategy of the algorithm published in: Blind Separation of Disjoint 

Orthogonal Signals: Demixing n sources from 2 mixtures, by A. Jourjine, S. Rickard, and O. 

Yilmaz, in Proc. Int. Conf. on Acoust., Speech, Signal Processing, 2000, vol. 5, pp. 2985-

2988. The specific request of patented algorithm is that source signals are disjointly 

orthogonal in time-frequency plane. It is empirically known that this assumption is fulfilled 

for the voice signals. However, there is no rational to believe that it will be fulfilled for 

arbitrary type of signals such as for example those that arise in the fields of spectroscopy or 
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spectrometry. The reason is that pure components residing in the spectroscopic mixture 

signals are active simultaneously in time and frequency. Hence, said method is not applicable 

to the fields of spectroscopy or spectrometry. 

 

[00023] The US Patent 6,577,966 "Optimal ratio estimator for multisensor system," aims to 

extract multiple source signals from two mixtures only. Separation method based on optimal 

ratio estimation is possible provided that source signals do not overlap in time-frequency 

domain. As already commented this assumption approximately holds for the voice-type of 

signals and the purpose of said method is separation of multiple voice signals from two-

microphone recordings. As already discussed in the previous paragraph it is not realistic to 

expect for arbitrary type of signals, such as those arising for example in the fields of 

spectroscopy of spectrometry, not to overlap in time-frequency plane. The reason is that pure 

components residing in the spectroscopic mixture signals are active simultaneously in time 

and frequency. Hence, said method is not applicable to the fields of spectroscopy or 

spectrometry. 

 

[00024] The US Patent Application 20070257840 "Enhancement Techniques for Blind 

Source Separation," is related to improving performance of the BSS algorithms for separation 

of audio signals from two microphone recordings. Decorrelation based pre- and post-filtering 

(least means square filtering) is applied to the first and second microphone signals for the 

enhancement purpose. The method assumes that a first microphone is in the proximity of a 

first source signal and a second microphone is in the proximity of a second source signal. In 

this sense the known method is very limited and can not be applied to the field of 

spectroscopy and spectrometry where mixtures are obtained over time or wavelength (there is 

no plurality of the physical sensors) and more than two sources (pure components) exist. 

 

[00025] The US patent application 20060064299 "Device and method for analyzing an 

information signal," is related to extraction of multiple audio signals from single mixture. The 

method splits the mixture into plurality of component signals and finds information content of 

each component signal based on calculation of their features; wherein feature is defined so 

that it is correlated with two source signals in two different subspaces. The features are audio 

signal specific and that is what limits this patent application to separate audio signals only. 

Hence, the algorithm presented in cited patent application is not applicable to the type of 

signals that arise in the fields of spectroscopy and spectrometry. 
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[00026] The US patent application 20060058983 "Signal separation method, signal separation 

device, signal separation program and recording medium," presents a signal separation 

algorithm capable to separate multiple source signals from multiple mixtures wherein the 

number of sources can be greater than the number of mixtures. The algorithm relies on 

standard concept when dealing with uBSS problems: transforming mixtures into frequency 

domain, performing data clustering to estimate number of sources and performing frequency 

domain ICA at those frequencies where two or more sources are active. Thus, the algorithm in 

cited patent applications has the following deficiencies: (i) the number of sensors must be 

greater than two if more than two sources are active at the same frequency; (ii) in relation to 

comment (i) Fourier basis (frequency domain), that is used by the cited application, is not 

optimal for the type of signals that arise in spectroscopy.  

 

[00027] The US patent application 20050032231 "Identifying component groups with 

independent component analysis," presents ICA based solution for blind decomposition of 

multivariate spectrometric data. The solution of the cited application has the following 

deficiencies: (i) since the blind decomposition problem is solved by ICA, the number of 

mixtures must be greater than or equal to the unknown number of pure components; (ii) since 

ICA is used to solve blind decomposition problem, pure component must be statistically 

independent what is known not to be generally true for pure components arising in 

spectrometry: G. Wang et. al., "A primary study on resolution of overlapping GC-MS signal 

using mean-field approach independent component analysis," Chemometrics and Intelligent 

Laboratory Systems 82, 137-144, 2006; W. Naanaa, J.-M. Nuzzilard, "Blind source separation 

of positive and partially correlated data," Signal Processing 85, 1711-1722, 2005.  Hence, the 

algorithm presented in cited application can not separate more than two spectroscopic signals 

that are statistically dependent using two mixtures only.     

 

[00028] The US patent application 20030088384 "Chemical substance classification 

apparatus, chemical substance classification method, and program" presents an ICA based 

solution for blind decomposition of multivariate chemical substance data. The same 

comments apply as in relation to the previously cited US patent application 20050032231.  

 

[00029] The patent application WO2008076680 (US2008147763) "Method and Apparatus for 

Using State Space Differential Geometry to Perform Nonlinear Blind Source Separation," 
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presents quite general state space differential geometry based approach to nonlinear blind 

source separation. The set of application domains covered by claims is quite wide. The main 

assumption of the algorithm proposed in the cited application is that the number of mixtures 

that contain possibly nonlinear combinations of the pure component signals is greater than or 

equal to the number of pure components as well as that pure component signals are 

statistically independent. Hence, algorithm presented in the cited application can not separate 

more than two spectroscopic signals that are statistically dependent using smaller number of 

mixtures.     

 

[00030] The patent application WO2007103037 (US2007004966) "System and Method for 

Generate a Separated Signal," applies a concept of independent vector analysis to separate 

multiple source signals from multiple mixtures, whereas the number of mixtures must be 

greater than or equal to the number of source signals. Hence, the algorithm presented in the 

cited application can not separate more than two spectroscopic signals using smaller number 

of mixtures.  

 

[00031] The patent application US2006256978 "Sparse signal mixing model and application 

to noisy blind source separation," presents an algorithm for blind extraction of two or more 

signals from two mixtures only by transforming measured signals into time-frequency 

domain. The fundamental assumption made on the two source signals is that they are 

disjointly orthogonal, i.e. that at each time-frequency location only one source signal exists. 

This assumption is quite restrictive and even in the cited application it is stated that it 

approximately holds for voice signals only. The known method will not work in the case of 

spectroscopic signals, because the pure components are simultaneously active in time and 

frequency. 

 

[00032] The patent application WO03090127 "Blind source separation utilizing a spatial 

fourth order cumulant matrix pencil," relates to novel method for blind separation of again 

statistically independent sources relying on fourth-order cumulants and generalized eigen-

analysis. Said method suffers from the same limitations as mentioned above, namely (i) 

sources must be statistically independent and (ii) the number of mixtures must be equal to or 

greater than the number of sources. 
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[00033] The International patent application number PCT/2008/000037 relates to a method of 

and system for blind extraction of more than two pure components out of spectroscopic or 

spectrometric measurements of only two mixtures by means of sparse component analysis. 

Said known method for blind extraction of more than two pure components out of two 

mixtures that is based upon assumption that pure components do not overlap either in original 

recording domain or in some transformed domain. However, in the case of NMR 

spectroscopy it is practically impossible to satisfy no-overlap assumption when pure 

components represent complex chemical compounds such as those that arise in analyses of 

biological fluids (urine, blood plasma, cerebrospinal fluid, saliva, amniotic fluid, bile, tears, 

etc.) that include determination of certain metabolites or biomarkers.  

 

[00034] Accordingly, it is the aim of the present invention to provide a method and system for 

blind extraction of more pure components than mixtures in 1D- and 2D-NMR spectroscopy 

and mass spectrometry. 

     

[00035] This aim is achieved by a method of blind extraction of more pure components than 

mixtures in 1D- and 2D-NMR spectroscopy and mass spectroscopy by means of combined 

use of sparse component analysis and detection of single component points, characterised in 

that said blind extraction comprises the following steps:  

- recording two or more mixtures data X wherein a recording domain of the mixture 

data is defined by equation [I]:  

 

  ASX      [I] 

 

where S is an unknown matrix of pure components and A is an unknown mixing or 

concentration matrix, 

- storing the recorded two or more mixtures data, 

- provided that mixtures data X [I] are 1D- or 2D-NMR spectroscopy data,  

- transforming the mixtures data X into a wavelet domain by using wavelet  

transform T1 wherein two or more transformed mixtures T1(X) are represented 

by equation [II]: 

    

 T1(X)=AT1(S)      [II] 
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and pure components in the wavelet representation domain defined by equation 

[II] are sparser than in recording domain defined by equation [I], 

- detecting the single component points in the wavelet domain [II] T1 where only 

one pure component is active according to direction based criterion [V], 

 

   

T

1 1

1 1

( ) ( )
cos

( ) ( )

t t

t t

R T I T

R T I T

x x

x x
     [V] 

 

  where for the same predefined angular displacement   significantly more 

  SCPs will be identified in wavelet domain [II] than Fourier domain [III],    

 

- estimating the number of pure components S present in the mixtures using two 

out of n 2 mixtures from the set of detected single component points in 

wavelet domain defined by equation [II] by means of a clustering function, 

- estimating the concentration matrix A from the set of detected single 

component points in wavelet domain defined by equation [II] by means of a 

data clustering algorithm,  

- transforming 1D- or 2D-NMR mixtures data [I] into frequency domain by 

using Fourier transform T2 wherein the transformed mixtures are represented 

by equation [III]: 

 

 T2(X)=AT2(S)     [III] 

 

- estimating the pure components T2(S) in the frequency domain [III] by means 

of linear programming, constrained convex programming or constrained 

quadratic programming, 

- provided that mixtures data X [I] are mass spectrometry data,  

- constructing analytical continuation of the real data X as represented in 

equation [IV] 

 

    jHX X X       [IV] 

where H(X) represents Hilbert transform of X and 1j  represents 

imaginary unit, 
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- detecting the single component points in the analytical continuation [IV] where 

only one pure component is active by means of direction based criterion [V], 

 

   

T

cost t

t t

R I

R I

x x

x x
     [V] 

 

 where   is some predefined angular displacement, 

- estimating the number of pure components S present in the mixtures using any 

two out of n 2 mixtures from the set of detected single component points in 

recorded mixtures [I] by means of a clustering function, 

- estimating the concentration matrix A from the set of detected single 

component points in recorded mixtures [I] by means of a data clustering 

algorithm,  

- estimating the pure components from recorded mixtures [I] by means of linear 

programming, constrained convex programming or constrained quadratic 

programming,  

- presenting the pure components. 

 

[00036] Further, this aim is achieved by a system for blind extraction of more pure 

components than mixtures in 1D- or 2D-NMR spectroscopy and mass spectrometry by means 

of sparse component analysis and detection of single component points, comprising: a 

mixtures sensing device (1) for recording mixtures data X, an input storing device or medium 

(2) for storing the mixture data X recorded by the mixtures sensing device (1), a processor (3), 

wherein code is implemented or carried out for executing a method according to any one of 

claims 1 to 14 based on the mixtures data X stored in/on the input storing device or medium 

(2), an output storing device or medium (4) for storing the result of the method carried out by 

the processor. 

 

[00037] Preferably, said method comprises selecting the estimated pure components in 

accordance with the negentropy-based ranking criterion and presenting the selected pure 

components. 
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[00038] Preferably, the transform T1 is a wavelet transform with the symmlet wavelet of 

order 4 to 16. 

 

[00039] Furthermore, conveniently the transform T2 is a Fourier transform. 

 

[00040] According to a special embodiment, single component points are detected using 

direction based criterion [V] in wavelet domain [III], when recorded data [I] are NMR 

spectroscopy data. 

 

[00041] Conveniently, the clustering function is capable of estimating the number of pure 

components from the set of detected single component points in wavelet domain [II] and any 

two out of n 2 mixtures. 

 

[00042] Advantageously, the data clustering algorithm is capable of estimating the 

concentration matrix from the set of detected single component points in the wavelet domain 

[II]. 

 

[00043] More preferably, the data clustering algorithm estimates the number of pure 

components on a 2D subspace of the higher dimensional space with dimension determined by 

the number of recorded mixtures, while the concentration matrix is estimated from a set of 

detected single component points of the mixtures data by means of standard data clustering 

algorithms such as for example k-means clustering, hierarchical clustering, fuzzy c-means 

clustering, etc.  

 

[00044] Advantageously, a numerical method is used to estimate the pure components in the 

frequency domain [III] when mixtures data X are 1D- or 2D-NMR spectroscopy data, or 

original recording domain [I] when mixtures data X are mass spectrometry data, that is a 

linear programming method, a convex programming method with quadratic constraint (
2
-

norm based constraint) or a quadratic programming method with 
1
–norm based constraint. 

 

[00045] Preferably, single component points are detected using direction based criterion [V] 

using analytical continuation [IV], when recorded data [I] are mass spectrometry mixtures. 
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[00046] In particular, preferably the clustering function is capable of estimating the number of 

pure components from the set of detected single component points in recorded mass 

spectrometry mixtures domain [I] and any two out of n 2 mixtures. 

 

[00047] In particular, the data clustering algorithm might be capable of estimating the 

concentration matrix from the set of detected single component points in the recorded mass 

spectrometry mixtures domain [I]. 

 

[00048] According to a further special embodiment, a method is applied to the identification 

of the compounds in chemical synthesis, food quality inspection or pollution inspection, i.e. 

environment protection.  

 

[00049] Preferably, said method is applied to the identification of compounds obtained from 

natural sources (microorganisms, plants and animals), metabolites and biomarkers present in 

biological fluids (urine, blood plasma, cerebrospinal fluid, saliva, amniotic fluid, bile, tears, 

etc.) or tissues extracts.  

 

[00050] Furthermore, the present invention provides a computer-readable medium having 

computer-executable instructions stored thereon, which, when executed by a computer, will 

cause the computer to carry out a method of the present invention. 

 

[00051] In a preferred embodiment of the system, the output storing device is a printer or 

plotter and the output storing medium a memory based device that is computer-readable. 

 

[00052] Finally, in a preferred embodiment of the system, the mixtures sensing device is a 

nuclear magnetic resonance (NMR) spectrometer or mass spectrometer.  

 

[00053] The novelty of proposed invention in relation to PCT/2008/000037 is in the use of a 

set of detected single component points (SCPs) at which only one pure component is present, 

in estimation of the unknown number of pure components and corresponding concentration 

matrix. This leads to the more accurate estimation of more pure components than mixtures in 

1D- and 2D-NMR spectroscopy and mass spectrometry, when pure components exhibit high 

level of complexity and similarity, leading consequently to serious overlapping in both 1D- 

and 2D-NMR spectra.  
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[00054] The idea of using SCPs for blind separation of components has been exploited in 

multispectral and hyperspectral data analysis under various names such as: pixel purity index 

(PPI) in J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping target signatures via partial 

unmixing of AVIRIS data,” in Summaries of JPL Airborne Earth Science Workshop, 

Pasadena, CA, 1995; fast iterative PPI in Ch.-I Chang, and A. Plaza, “A Fast Iterative 

Algorithm for Implementation of Pixel Purity Index,” IEEE Geoscience and Remote Sensing 

Letters, vol. 3 (1) (2006), 63-67; the N-FINDR in M. E. Winter, “N-findr: An algorithm for 

fast autonomous spectral end-member determination in hyperspectral data,” in Proc. SPIE 

Conf. Imaging Spectroscopy V, 1999, pp. 266-275.; the vertex component analysis in J. M. P. 

Nascimento, and J. M. Bioucas Dias, “Vertex Component Analysis: A Fast Algorithm to 

Unmix Hyperspecral Data,” IEEE Trans. Geoscience and Remote Sensing, vol. 43 (2005) 

898-909. What is in common to all these approaches to SCPs detection is an assumption that 

in the given data set is present at least one sample where only single component is active. This 

is a strong requisite and surely does not hold in many data sets especially those involved with 

1D- or 2D-NMR spectra of complex bio-related mixtures. Biological fluids and tissue extracts 

contain hundreds to thousands of different compounds. This in turn leads to a large number of 

signals and results in considerable signal overlapping, especially in 
1
H NMR spectra, thus 

hampering accurate identification of targeted compounds. Spreading the signals over two or 

more dimensions will reduce overlap, but will not exclude it in more demanding cases. In 

addition to that elaborated methods are computationally demanding relying on complex 

geometrical concepts such as convex hulls, simplex or skewers.  

  

[00055] As opposed to the SCPs detection approaches described in previous paragraph, 

proposed invention is based on idea to detect SCPs in either original or transformed domain 

using the criterion based on simple geometrical concept of direction. Such idea has been 

proposed for estimation of the concentration matrix (it was called mixing matrix in this 

reference) in: V.G. Reju, S.N. Koh, I. Y. Soon, “An algorithm for mixing matrix estimation in 

instantaneous blind source separation,” Signal Processing 89 (2009) 1762-1773. The criterion 

for identification of the SCPs is to compare direction of real and imaginary parts of the 

measured data samples in Fourier or frequency domain. When real and imaginary parts are 

pointing to either the same or opposite directions the data samples are identified as SCPs. It is 

evident that proposed SCPs detection criterion requires complex data. In proposed invention 

we make two extensions/generalizations of the criterion used for the SCPs detection.   
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[00056] First generalization is related to applying SCPs detection criterion to data samples in 

wavelet instead in frequency (Fourier) domain. Wavelet transform is characterized by 

multiple resolution levels and multiple choices of wavelet functions. This generally yields 

higher level of sparseness than when data are transformed into Fourier domain. Hence, greater 

number of SCPs can be detected when appropriate resolution level and appropriate wavelet 

function are selected than when Fourier domain is used to represent transformed data. To 

detect SCPs and estimate concentration matrix in case of 1D- and 2D-NMR mixtures, 1D- and 

2D-wavelet transforms are used respectively to represent NMR signals in wavelet domain. 

Since recorded time domain NMR signals are complex, their wavelet transforms are complex 

as well. Hence, direction-based detection criterion requiring complex representation can be 

used to detect SCPs. Thus, unlike SCPs detection criterion described in paragraph [00054] 

wavelet transform based approach to SCPs detection allows transformation of data into basis 

or representation where pure components are expected to be sparse. Due to this fact the 

probability that at least one sample or point will be found where only one pure component is 

active is increased significantly.   

 

[00057] Second generalization of the SCPs detection criteria is related to its use when 

recorded data are real. Such situation arises in mass spectrometry. Complex representation of 

real signal is obtained through analytical continuation of the real signal. Analytical 

continuation of the real signal has real part that equals the real signal itself and has imaginary 

part that equals Hilbert transform of the real signal. Hence, detection criteria requiring 

complex representation can be used to detect SCPs. 

 

BRIEF DESCRIPTION OF DRAWINGS 

 

[00058]  In the sequel a more detailed description of the invention will be given with 

references to the following figures, in which: 

Figure 1  schematically illustrates a block diagram of a device for blind 

extraction of more pure components than mixtures in 1D/2D- 

NMR spectroscopy or mass spectrometry by means of combined 

sparse component analysis and detection of single component 

points according to an embodiment of the present invention;  
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Figures 2A to 2X demonstrate experimental blind extraction of four pure 

components COSY (correlation spectroscopy) spectra from 

three
 
mixtures by means of sparse component analysis and SCPs 

detection; 

Figures 3A to 3P demonstrate experimental blind extraction of five pure 

components mass spectra from two mixtures by means of sparse 

component analysis and SCPs detection. 

 

[00059] A schematic block diagram of a device for blind extraction of more pure components 

than mixtures in 1D- and 2D-NMR spectroscopy and mass spectrometry that is defined by 

equation [I] and employing methodology of sparse component analysis combined with 

detection of SCPs according to an embodiment of the present invention is shown in figure 1. 

The device consists of: mixtures sensing device 1 used to gather 1D/2D-NMR spectroscopy 

or mass spectrometry data; storing device 2 used to store gathered 1D/2D-NMR spectroscopy 

or mass spectrometry data; CPU 3 or computer where algorithms for sparse component 

analysis in combination with detection of SCPs are implemented for blind extraction of pure 

components from gathered 1D- and 2D-NMR spectroscopy or mass spectrometry data; and 

output device 4 used to store and present extracted pure components. 

 

[00060]  The procedure for processing gathered and stored 1D/2D NMR spectroscopy or 

mass spectrometry mixture data  with the aim to blindly extract pure components is 

implemented in the software or firmware in the CPU 3 and according to an embodiment of the 

present invention consists of the following steps: provided that recorded mixtures defined by 

equation [I] represent 1D- or 2D-NMR data, they are transformed by wavelet transform T1 

into wavelet representation domain defined by equation [II] with the aim to increase 

sparseness of the pure components; the transformed mixtures equation [II] are used for  

detection of points where only single pure components are active (single component points-

SCPs); based on a set of detected SCPs the number of pure components and concentration 

matrix are estimated; recorded 1D- or 2D-NMR data [I] are transformed by Fourier transform 

T2 into Fourier or frequency domain [III]; based on the estimated concentration matrix pure 

components are estimated by either linear programming, convex programming with 

constraints or quadratic programming with constrains using mixtures in Fourier or frequency 

domain defined by equation [III]; blindly extracted pure components are stored and presented 

in the final form on the output device or medium 4; provided that recorded mixtures defined 
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by equation [I] represent mass spectrometry data, they are extended to analytical continuation 

defined by equation [IV]; analytically extended mixtures are used for detection of points 

where only single pure components are active; based on a set of indexes of detected SCPs the 

number of pure components and concentration matrix are estimated from a corresponding 

subset of the recorded real mass spectrometry mixture data defined by equation [I]; based on 

the estimated concentration matrix pure components are estimated by either linear 

programming, convex programming with constraints or quadratic programming with 

constrains using mixtures in recorded domain defined by equation [I]; blindly extracted pure 

components are stored and presented in the final form on the output device or medium 4.  

 

[00061] In detail, according to an embodiment of the present invention procedure for blind 

extraction of more pure components than mixtures recorded in 1D/2D NMR spectroscopy or 

mass spectrometry consists of the following steps: 

- recording two or more mixtures data X defined by equation [I] with mixtures sensing 

device 1, for 1D or 2D nuclear magnetic resonance spectroscopy or mass 

spectrometry, wherein mixtures are defined as a product of an unknown mixing matrix 

A (also called concentration matrix) and matrix of the unknown pure components S, 

- if recorded mixtures data X represent NMR data, transforming them from an original 

domain represented by equation [I] into a wavelet representation domain defined by 

equation [II] by means of the wavelet transform T1, wherein transformed mixtures 

T1(X) represented by equation [II] are defined as a product of the mixing matrix A  

and transformed matrix of the pure components T1(S), 

- estimating the concentration matrix A and number of pure components S by means of 

a data clustering algorithm on a set of single component points detected in wavelet 

representation domain T1(X) defined by equation [II], 

- estimating the pure components T2(S) in the Fourier or frequency domain defined by 

equation [III] (obtained by transforming recorded mixtures defined by equation [I] by 

Fourier transform T2) by means of linear programming, convex programming with 

constraints or quadratic programming with constrains,  

- if recorded mixtures data X represent mass spectrometry data, expanding them from 

an original real signal domain defined by equation [I] into complex analytical 

continuation domain defined by equation [IV], 

- identifying subset of indexes of single component points using analytic representation 

of the mixture data X defined by equation [IV],  
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- estimating the concentration matrix A and number of pure components S by means of 

a data clustering algorithm on a subset of original mixture data X [I] defined by 

identified subset of indexes, 

- selecting estimated pure components of interest in accordance with negentropy-based 

ranking criterion, and 

- storing and presenting selected pure components at the chosen output device 4. 

 

[00062] Figures 2A to 2X demonstrate experimental blind extraction of four pure components 

COSY spectra from three mixtures by means of sparse component analysis and single 

component points detection according to an embodiment of the present invention. Compounds 

used in this analysis belong to a class of synthetically obtained glycopeptides. Dipeptide-, 

tripeptide- and tetrapeptide-related glucosyl esters exhibit large structural similarities and 

significant overlapping in NMR spectra. Figures 2A to 2D show COSY spectra (in the Fourier 

basis) of the four pure components. Figures 2E to 2G show COSY spectra of the three 

mixtures. Figures 2H to 2J show clustering functions in the mixing angle domain for three 

two-dimensional subspaces X1X2, X1X3 and X2X3. Clustering functions were calculated on a 

set of 203 single component points detected in 2D wavelet domain [II], i.e. T1 was 2D wavelet 

transform, with symmlet wavelet of order 8 and SCPs detection criterion [V] with tolerance 

=1
0
. There are four peaks in clustering functions 2H to 2J suggesting existence of four pure 

components in the mixtures. The amplitude spectra of the estimated pure components that 

correspond to the four true pure components are shown in figures 2K to 2N. Since 

concentration matrix is estimated accurately on a subset of SCPs 
1
-regularized least square 

problem will yield good estimate of the pure components even when two pure components 

occupy the same frequency. Similarity between true and estimated pure components is 

quantified in Figure 2W, where normalized correlation coefficients between estimated and 

true pure components are shown. For the reference, Figure 2V yields normalized correlation 

coefficients between the true pure components. It is evident that they are significantly 

correlated. Based on this, results presented in Figures 2K to 2N and Figure 2W can be 

considered good. To demonstrate importance of the wavelet basis, we show in Figures 2R to 

2U amplitude spectra of the estimated pure components when Fourier basis was used to detect 

single component points. Figures 2O to 2Q show clustering functions in the mixing angle 

domain for three two-dimensional mixture subspaces X1X2, X1X3 and X2X3. With SCPs 

detection criterion [V] with tolerance =2
0
, only 23 single component points were detected. 
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Hence, although the tolerance was two times greater than in the case of wavelet basis, almost 

ten times less SCPs were detected. This illustrates importance of the wavelet basis for NMR 

signals. Figure 2X gives normalized correlation coefficients between the true pure 

components and pure components estimated by 
1
-regularized least square algorithm, 

whereas number of pure components and concentration matrix are estimated on the basis of 

23 SCPs. As can be seen from Figure 2X pure components 3 and 4 are not well separated due 

to the fact the estimate of the pure component 4 is more correlated with the pure component 3 

than with the pure component 4. 

 

[00063] Figures 3A to 3M demonstrate experimental blind extraction of five pure components 

from two mass spectra mixtures by means of sparse component analysis and single 

component points detection and according to an embodiment of the present invention. Pure 

components 1-5, shown in Figure 3A belong to a class of symmetrical enediyne-bridged 

compounds derived from glycine, alanine, valine, leucine and phenylalanine. Figures 3B to 3F 

show mass spectra of pure components 1-5. Figures 3G and 3H show mass spectra of two 

mixtures consist of compounds 1-5. Figure 3I shows clustering function in the mixing angle 

domain for two-dimensional mixture space X1X2. Clustering function was calculated on a set 

of 290 single component points detected on analytical continuation [V] of recorded mass 

spectra [I]  and SCPs detection criterion [V] with tolerance =2
0
. There are five peaks in 

clustering function 3I suggesting existence of five pure components in the mixtures. Mass 

spectra of the estimated pure components that correspond to the five true pure components are 

shown in figures 3J to 3N. Visual impression reflects high degree of similarity between true 

and estimated pure components. Similarity between true and estimated pure components is 

quantified in Figure 3P where normalized correlation coefficients between estimated and true 

pure components are shown. For the reference, Figure 3O yields normalized correlation 

coefficients between the true pure components. It is evident that they are weakly correlated. 

Thus, estimation of both concentration matrix on a set of 290 SCPs through data clustering 

and pure components, based on estimated concentration matrix, using linear programming 

was not so demanding task as previously described 2D NMR case. It was however demanding 

from the fact that five pure components ought to be estimated from two mixtures only.  

 

DETAILED DESCRIPTION OF THE INVENTION 
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[00064] The present invention relates to the field of 1D- and 2D-NMR spectroscopy and mass 

spectrometry. More specific, the invention relates to the combined application of the methods 

of sparse component analysis and detection of single component points for blind extraction of 

more pure chemical compounds than recorded number of spectroscopic or spectrometric 

mixtures, wherein mixtures are gathered by NMR spectroscopy or mass spectrometry. 

Proposed blind pure components extraction approach estimates the unknown number of pure 

components and concentration matrix from the subset of mixtures samples where only one 

pure component is active. This subset is identified using complex representation of 

spectroscopic or spectrometric signals and detection criterion based on geometrical concept of 

direction according to equation [V]. For NMR signals SCPs are identified in wavelet domain 

[II] while for mass spectrometry signals SCPs are identified on analytical continuation [IV] of 

the real mass spectrometry mixtures data [I]. Identified pure components can be used for 

identification of chemical compounds in chemical synthesis, food quality inspection or 

pollution inspection i.e. environment protection, identification of compounds obtained from 

natural sources (microorganisms, plants and animals), metabolites and biomarkers present in 

biological fluids (urine, blood plasma, cerebrospinal fluid, saliva, amniotic fluid, bile, tears, 

etc.) or tissue extracts. 

 

[00065] The specific case of blind extraction of pure components in which the number of 

there is less than or equal to the number of mixtures could be solved by the proposed 

invention as well. However, such solution would be computationally too costly and other 

computationally more efficient methods can be used for this specific case. 

 

[00066] The enabling concept for the solution of the problem of blind extraction of more pure 

components than mixtures is known under the common name sparse component analysis 

(SCA), while the problem itself is called underdetermined blind source separation (uBSS). 

Theoretical foundations of the solution of the uBSS problem employing SCA are laid down 

in: P. Bofill and M. Zibulevsky, “Underdetermined blind source separation using sparse 

representations. Signal Processing 81, 2353-2362, 2001; Y. Li, A. Cichocki, S. Amari, 

“Analysis of Sparse Representation and Blind Source Separation,” Neural Computation 16, 

pp. 1193-1234, 2004; Y. Li, S. Amari, A. Cichocki, D.W.C. Ho, S. Xie, “Underdetermined 

Blind Source Separation Based on Sparse Representation,” IEEE Trans. On Signal 

Processing, vol. 54, No. 2, 423-437, 2006; P. Georgiev, F. Theis, and A. Cichocki, “Sparse 
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Component Analysis and Blind Source Separation of Underdetermined Mixtures,” IEEE 

Trans. On Neural Networks, vol. 16, No. 4, 992-996, 2005.  

 

[00067] Let us assume the number of mixtures to be n and the unknown number of pure 

components to be m, as well as that m>n 2. The uBSS problem is solvable by SCA approach, 

if pure components in some domain are (m-n+1)-sparse what implies that at each coordinate 

(for example frequency in Fourier basis) m-n+1 components are zero. By setting the number 

of mixtures to be n=2 this implies that at each coordinate in the domain of representation m-1 

pure components must be zero, i.e., the assumption is that pure components do not overlap in 

the representation domain. This assumption is very strong and is difficult to fulfil for NMR 

signals of complex chemical compounds such as proteins or those compounds that are 

isolated from biological samples. In such situations, to blindly extract more pure components 

than number of mixtures several steps have to be combined: number of mixtures needs to be 

increased from n=2 to n=3 (or maybe even to n=4), see description in paragraph [00062] for 

2D NMR spectra of glycopeptides; to estimate concentration matrix and number of pure 

components accurately subset of points where only one pure components is active must be 

identified using detection criterion [V]. These SCPs are then used to estimate the number of 

pure components and concentration matrix by means of data clustering algorithms; to identify 

greater number of SCPs, recorded mixtures NMR data [I] are transformed into wavelet basis 

[II]; to apply SCPs detection criterion [V] to mass spectrometry data [I] they ought to be 

expanded into analytical representation or analytical continuation [IV].   

 

[00068] As already elaborated, the number of pure components present in the recorded 

mixtures is always unknown. Accurate estimation of this number is a challenging task and is 

accomplished by fairly complex statistical methods such as maximum likelihood, 

bootstrapping and jack-knifing: F. Westad, M. Kermit, “Cross validation and uncertainty 

estimates in independent component analysis,” Analytica Chimica Acta 490, 341-354, 2003; 

E. Levina et al., “Estimating the number of pure chemical components in a mixture by 

maximum likelihood,” Journal of Chemometrics 21, 24-34, 2007. These methods are based on 

statistical ranking of the singular values of the sample data covariance matrix by discarding 

those that may be associated with outliers or chemical noise. In solving uBSS problems such 

methods can not be applied, since the number of pure components exceeds the overall number 

of singular values that equals the number of mixtures. Consequently, there are more pure 

components to rank than the number of singular values available.  
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[00069] According to the present invention the unknown number of pure components and 

concentration matrix are estimated on a set of samples, where only one pure component is 

active. Use of points of single component activity is not new. It has been exploited in DUET 

algorithm: A. Jourjine, S. Rickard, and O. Yilmaz, in Proc. Int. Conf. on Acoust., Speech, 

Signal Processing, 2000, vol. 5, pp. 2985-2988, for the separation of speech signals, wherein 

it has been assumed that at each point in time-frequency plane only one source (speech) signal 

is active. As discussed previously, this assumption is not true for time-frequency 

representation of NMR signals of complex chemical compounds. In references:V.G. Reju, 

S.N. Koh, I. Y. Soon, “An algorithm for mixing matrix estimation in instantaneous blind 

source separation,” Signal Processing 89 (2009) 1762-1773; and S.G. Kim, Ch. D. Yoo, 

“Underdetermined Blind Source Separation Based on Subspace Representation,” IEEE Trans. 

On Signal Processing 57 (2009) 2604-2614, two criteria were proposed to detect points of 

single component activity in the Fourier domain. Both of these criteria require complex 

representation of signals. In the present invention we use criterion proposed in: V.G. Reju, 

S.N. Koh, I. Y. Soon, “An algorithm for mixing matrix estimation in instantaneous blind 

source separation,” Signal Processing 89 (2009) 1762-1773. It is based on the notion that real 

and imaginary parts of the complex vector of mixtures data point either in the same or in the 

opposite directions at the point, where only single pure component is active. Let us denote by 

xt the complex vector of the mixtures data at the sample t. This sample belongs to the SCPs 

set, if the following criterion is satisfied 

 

   

T

cost t

t t

R I

R I

x x

x x
      [V] 

 

where R{xt} and I{ xt } respectively denote real and imaginary part of xt, „T‟ denotes 

transpose operation, 
tR x  and 

tI x  denote 
2
-norms of R{xt} and I{ xt } and   

denotes angular displacement from the direction of either 0 or  radians. Evidently, the 

smaller   is, the smaller number of candidates for SCPs will be identified. However, the 

accuracy of estimation of the number of pure components and concentration matrix will be 

greater. Thus, it is of great importance to find out representation domain, where pure 

components will be mutually sparse and where the greater number of SCPs will be identified 

for smaller displacement  .   
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[00070] 1D- and 2D-NMR data recorded in time domain are not sparse at all. In paragraph 

[00062] we have demonstrated that COSY spectra of three mixtures containing four pure 

glycopeptides-related components, when transformed into Fourier domain contained only 23 

SCPs according to the criterion [V] with the tolerance =2
0
. Therefore, we proposed to 

transform time domain 2D NMR data [I] into 2D wavelet domain with symmlet wavelet of 

order 8. In such a case, 203 SCPs are detected with the tolerance =1
0
. Thus, when NMR 

spectroscopy data are considered, instead of applying SCPs detection criterion [V] in Fourier 

domain (as suggested in: V.G. Reju, S.N. Koh, I. Y. Soon, “An algorithm for mixing matrix 

estimation in instantaneous blind source separation,” Signal Processing 89 (2009) 1762-

1773), we apply it in 1D- or 2D-wavelet domain with suitably chosen wavelet function. 

 

[00071] As described in paragraph [00066], SCPs detection criterion [V] requires complex 

representation of mixtures data. In order to apply this criterion to detect SCPs of real signals, 

such as mass spectrometry mixtures data, we propose to expand real mass spectrometry data 

[I] into complex analytical continuation [IV]. Paragraph [00063] describes experimental 

results of applying this concept to blind extraction of five pure components from two mixtures 

mass spectra.   

 

[00072] Number of pure components is identified from a subset of SCPs using clustering 

function described in paragraph [00079]. Since each pure component is expected to be 

contained in each mixture, any two-dimensional subspace in the mixture space can be used 

for this purpose. Concentration matrix is estimated on a subset of SCPs using some of the data 

clustering algorithms such as: k-means clustering, hierarchical clustering, fuzzy clustering, or 

clustering based on k-dimensional concentration subspaces as described in: F.M. Naini et al., 

“Estimating the mixing matrix in Sparse Component Analysis (SCA) based on partial k-

dimensional subspace clustering,” Neurocomputing 71, 2330-2343, 2008. The k-means 

clustering algorithm is proposed, if the number of mixtures is n>2, while 1-dimensional 

concentration subspaces approach is proposed, when n=2. Since on identified set of SCPs 

pure components do not overlap, proposed data clustering algorithms will yield accurate 

estimation of the concentration matrix. 

 

[00073] When the concentration matrix is estimated, the pure components are recovered by 

solving an underdetermined system of linear equations. For 1D- or 2D-NMR spectroscopy 
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data this is Fourier or frequency domain [III], while for mass spectrometry data this is 

recording domain [I]. If the pure components are in average m-n+1 sparse, the solution can be 

obtained by several methods that are based on constrained convex optimization: J. A. Tropp, 

A. C. Gilbert, “Signal Recovery From Random Measurements Via Orthogonal Matching 

Pursuit,” IEEE Transactions on Information Theory, vol. 53,No. 12, 4655-4666, 2007; S.J. 

Kim et al., “An Interior-Point Method for Large-Scale 
1
-Regularized Least Squares,” IEEE 

Journal of Selected Topics in Signal Processing, vol. 1, No. 4, 606-617, 2007. Moreover, it 

has been proven (I. Takigawa, M. Kudo J. Toyama, “Performance Analysis of Minimum l1-

Norm Solutions for Underdetermined Source Separation,” IEEE Tr. On Signal Processing, 

vol. 52, No.3, 582-591, 2004) that linear programming yields perfect solution when 

concentration matrix is known and when no more than n sources are active at each coordinate, 

i.e. when sources are (m-n)-sparse. Hence, linear programming or its equivalents based on 
1
-

norm minimization will yield a robust solution of the blind decomposition problem, if no 

more than n pure components are active at each coordinate in frequency domain [III] for 2D 

NMR data or original m/z domain [I] for mass spectrometry data. 

 

[00074] The problem of the blind extraction of more pure components than recorded mixtures 

by means of the SCA algorithms can algebraically be expressed as a matrix factorization 

problem n N
X R  by means of which recorded mixtures are represented by equation [I]: 

 

     ASX       [I] 

 

In equation [I] X represents recorded mixtures data, where n m

0A R  represents unknown 

concentration matrix and m N
S R represents matrix of the unknown pure components. In 

adopted notation n represents number of recorded NMR spectroscopy or mass spectrometry 

mixtures, N represent number of samples in the mixture, and m represents unknown number 

of the pure components. In the adopted scenario it presumed that m>n 2, i.e. resulting blind 

source separation problem is underdetermined. When referring to individual sample of the 

mixtures we shall use notation xt, whereas 1 t N. Such kind of blind problems can not be 

solved by means of the ICA algorithms discussed in paragraphs [00003] and [00004].  
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[00075] As previously discussed in paragraphs [00066]-[00074], underdetermined blind 

source separation problem is solvable if pure components are m-n+1 sparse. Actually m-n+1 

level of sparseness is required by data clustering algorithms to accurately estimate 

concentration matrix and number of pure components present in the mixtures. That is why 

detection of SCPs described in paragraphs [00072] -[00074] is of great importance. Provided 

that concentration matrix is estimated accurately, linear programming based signal 

reconstruction will yield accurate estimate of the pure components, even when n pure 

components occupy the same coordinate in the chosen representation domain. This result has 

been proven in: I. Takigawa, M. Kudo, J. Toyama, “Performance Analysis of Minimum l1-

Norm Solutions for Underdetermined Source Separation,” IEEE Tr. On Signal Processing, 

vol. 52, No.3, 582-591, 2004.  

 

[00076] When recorded mixtures [I] represent time domain NMR data, wavelet transform T1 

is proposed to transform recorded mixtures into new domain [II] 

 

    T1(X)=AT1(S)       [II] 

 

Proper combination of resolution level in the wavelet transform and wavelet function will 

yield representation of the pure components, such that significant number of SCPs can be 

detected using criterion [V]. In the present invention we use for wavelet function symmlets of 

order 4 to 16 to transform NMR data from time to wavelet domain. Set of detected SCPs 

contains samples in wavelet domain at which pure components are m-1 sparse, i.e. they do not 

overlap. Hence, data clustering algorithms will yield accurate estimate of the concentration 

matrix and number of pure components present in the mixture. 

 

[00077] When recorded mixtures [I] represent mass spectrometry data, no new representation 

domain is sought. To detect SCPs by means of criterion [V], analytical continuation [IV] of 

the mass spectrometry data [I] is necessary, see description in paragraph [00035]. Set of 

detected SCPs points contains samples in recorded mass spectrometry mixtures data [I] at 

which pure components are m-1 sparse, i.e. they do not overlap. Hence, data clustering 

algorithms will yield accurate estimate of the concentration matrix and number of pure 

components present in the mixture. 
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[00078] The number of unknown pure components m contained in recorded mixtures defined 

by equation [I] has to be estimated. As elaborated in [00068], advanced statistical methods 

developed for overdetermined BSS problems (m>n) are not applicable to underdetermined 

BSS problem. According to an embodiment of the present invention we presume that each 

pure component is present in each mixture. Therefore, the number of pure components can be 

estimated on the 2D-subspace of the mixture space. For this purpose we adopt the approach 

proposed in: F.M. Naini et al., “Estimating the mixing matrix in Sparse Component Analysis 

(SCA) based on partial k-dimensional subspace clustering,” Neurocomputing 71, 2330-2343, 

2008. Assuming the 2D-dimensional subspace in the mixture space, we model the column 

mixing vector as unit length vector T[cos( ) sin( )]a with mixing angle describing its 

position in the 2D coordinate system spanned by mixtures xi and xj. Since the elements of 

mixing vector have the chemical interpretation of concentrations of the pure components in 

the mixtures, they are nonnegative. Thus, the mixing angle is confined in the interval [0, /2].  

  

[00079] Provided that small samples of the selected two mixtures xi and xj are eliminated and 

that remaining samples are normalized to unit length, the following function   
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clusters mixtures data into the clusters, the number of which corresponds to the number of 

pure components. If recorded mixtures data [I] are 1D- or 2D-NMR data, F(x) represents 

samples in 1D- or 2D-wavelet domain [II]. If recorded mixtures [I] are mass spectrometry 

data, F(x) represents samples in recorded domain [I]. N N denotes the number of samples 

that remained, after small samples elimination process. In the clustering function f(a), d 

denotes distance calculated as 
2

, 1i id F Fx a x a  and 
iF x a  denotes the 

inner or dot product. Parameter   defines the resolving power of the function f(a). When  is 

set to a sufficiently small value, in our experiments this turned out to be 0.05, the value of 

the function f(a) will approximately equal the number of data points close to a. Positions of 

the centers of the clusters in the space of mixing angles correspond to the mixing angles that 

define the mixing vectors. Figures 2H to 2J show the clustering functions for 2D NMR data in 

2D wavelet domain on a set of 203 SCPs, whereas 2D subspaces in the mixture space were 
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respectively x1-x2, x1-x3, x2-x3. Corresponding clustering functions in Fourier domain on a set 

of 23 SCPs are shown in Figures 2O to 2Q. For more detailed description see [00062]. Figure 

3I shows clustering function for two mixtures mass spectrometry data on a set of 290 SCPs 

detected using analytical continuation of the mass spectrometry data [IV] and detection 

criterion [V]. For more detailed description see [00063]. 

 

[00080] After the number of pure components present in the mixture is estimated on 2D-

subspaces, the concentration matrix itself ought to be estimated from the set of SCPs. If the 

overall number of mixtures was n=2, the clustering algorithm described in previous paragraph 

[00079] yields also the estimate of the concentration matrix, because the centroid of each 

cluster represents vector of concentrations of the corresponding pure component. If the 

number of mixtures n is greater than 2, data clustering algorithm described in paragraph 

[00079] becomes computationally very costly due to the fact that it is based on (n-1)-

dimensional search procedure. Therefore, for scenarios when n>2 we propose use of standard 

data clustering algorithms such as: k-means, hierarchical clustering, fuzzy clustering, etc. 

These data clustering algorithms are described in: G. Gan, Ch. Ma, and J. Wu, Data 

Clustering – Theory, Algorithms and Applications, SIAM, 2007. Results reported in 

paragraph [00062] and Figures 2A to 2X that were related to blind extraction of four pure 

components from three mixtures of 2D NMR data were obtained using k-means algorithm. 

Results reported in paragraph [00063] and Figures 3A to 3P that were related to blind 

extraction of five pure components from two mixtures of mass spectrometry data were 

obtained by data clustering algorithm described in paragraph [00079]. 

 

[00081] After the number of pure components and the mixing matrix are estimated, the pure 

components themselves ought to be estimated. This can be achieved in Fourier or frequency 

domain [III], if 1D- or 2D-NMR data are considered or in original recorded domain [I], if 

mass spectrometry data are considered. Provided that pure components in these domains are 

m-n sparse, i.e. that at most n pure components are present in each mixture in these domains, 

linear programming will yield accurate solution for the estimate of the pure components in the 

domain [III] for NMR data and domain [I] for mass spectrometry data. This result has been 

proven in: I. Takigawa, M. Kudo J. Toyama, “Performance Analysis of Minimum l1-Norm 

Solutions for Underdetermined Source Separation,” IEEE Tr. On Signal Processing, vol. 52, 

No.3, 582-591, 2004. Other methods for estimation of the pure components that are 
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equivalent to the linear programming approach are: 
1
-regularized least square solution 

known as interior-point method (Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D., 

“An Interior-Point Method for Large-Scale 
1
-Regularized Least Squares,” IEEE Journal of 

Selected Topics in Signal Processing, 1(4), 606-617, 2007); and other methods that belong to 

the group of convex relaxation based methods. 

 

[00082] As explained in paragraph [00078], the number of pure components is estimated 

employing a data clustering algorithm [00079] on a set of SCPs. The sensitivity of the 

clustering function is regulated through the dispersion factor . Since the experimental data 

can contain errors due to the presence of chemical noise or outliers, as discussed in the US 

patent application 20040111220 in paragraph [00014], it is necessary to derive a robust 

estimator of the number of pure components. For this purpose we propose to slightly variate 

the dispersion factor  and estimate the mixing matrix, related number of pure components m 

and pure components themselves for each value of . To evaluate the quality of the estimates 

of the mixing matrix and pure components, we propose to use the root-mean-squared-error 

(RMSE) criterion between original and reconstructed data as for example in: G. Wang, W. 

Cai, X. Shao, “A primary study on resolution of overlapping GC-MS signal using mean-field 

approach independent component analysis,” Chemometrics and Intelligent Laboratory 

Systems 82, 137-144, 2006. 
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As the solution for the mixing matrix A and pure components S, we present the one that 

minimizes RMSE criterion.  

 

[00083] When working with experimental data, the presence of outliers (sources that are not 

pure components in the true sense but are the consequence of chemical noise or other 

imperfections present in the real world applications) must be allowed. In order to discriminate 

estimated pure components that correspond to the true pure components from the outliers we 

propose an information theoretic measure called negentropy: A. Hyvärinen, J. Karhunen, E. 

Oja. Independent Component Analysis, John Wiley, 2001. Negentropy is entropy defined 
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relatively in relation to the entropy of the Gaussian random process. Since the Gaussian 

random process has the largest entropy its negentropy will be zero. The more informative 

(non-Gaussian) the random process is, the largest negentropy it has. Since we intuitively 

expect the pure components to be informative, we also expect their negentropies to be large. 

As opposed to that we expect the negentropies of the possible outliers to be small. 

 

[00084] The present invention is related to blind extraction of more pure components than 

mixtures of the chemical compounds by means of combined use of sparse component analysis 

and detection of single component points. As opposed to the state-of-the art blind spectra 

decomposition methods that require the number of mixtures to be equal to or greater than the 

unknown number of pure components, paragraphs [0002] – [0012], approach proposed in this 

invention allows the number of mixtures to be smaller than number of pure components to be 

extracted. The invention is based on detection of samples at which only one pure component 

is active using simple geometrical criterion based on direction [V]. For 1D- and 2D-NMR 

signals 1D- and 2D-wavelet basis [II] are proposed for selection of the points where single 

pure components are active. For mass spectrometry data analytical continuation [IV] is used 

for the same purpose. Based on a set of SCPs, present invention is capable to automatically 

determine the number of pure components present in the mixtures. This is in contrast to many 

existing blind source separation methods.  

 

[00085] The present invention blindly extracts more pure components than mixtures and 

estimates the unknown number of pure components and concentration matrix on a set of SCPs 

using data clustering algorithm commented in paragraphs [00078] and [00079]. The process 

of detection of SCPs for NMR spectroscopy data is carried out in wavelet basis [II] and is 

described in paragraphs [00035], [00075], [00076], whereas the detection criterion [V] is 

described in paragraph [00069]. The process of detection of SCPs for mass spectrometry data 

is carried out using analytical continuation [IV] and is described in paragraphs [00035], 

[00071], [00077]. The present invention estimates the mixing matrix on a set of SCPs using 

data clustering algorithms described in paragraphs [00079] and [00080]. Accurate estimations 

of the number of pure components and concentration matrix are ensured due to the fact that 

pure components do not overlap in a set of detected SCPs. It is demonstrated in the invention 

that for 2D NMR data, a significant number of SCPs can be found in the wavelet basis, when 

pure components represent chemical compounds with high degree of similarity, such as 

glycopeptides, but only a few SCPs can be found in the Fourier basis i.e. frequency domain. 
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[00086] The invention can be applied to identification of the compounds in the 

pharmaceutical industry in the chemical synthesis of new compounds with different 

properties. It can also be applied in the food quality inspection and environment protection 

through pollution inspection. Another application of the proposed invention is in software 

packages, as the built in computer code, that are used for the analysis and identification of the 

chemical compounds. Possibly the most important application of the proposed invention is in 

instrumental diagnostics; determination and identification of biomarkers present in biological 

fluids (urine, blood plasma, cerebrospinal fluid, saliva, amniotic fluid, bile, tears, etc.) or 

tissues extracts; detection of pathologies (genetically determined diseases), detection of 

patients with predisposition for certain disease, monitoring the responses of organism  to the 

action of pharmaceuticals, pathogens or toxic compounds (wars, natural or ecology disasters). 

 

[00087] The features in the foregoing description, in the claims and/or in the accompanying 

drawings may, both and in any combination thereof, be material for realising the invention in 

diverse forms thereof. 
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CLAIMS 

 

1. Method of blind extraction of more pure components than mixtures in 1D- and 2D-

NMR spectroscopy and mass spectroscopy by means of combined use of sparse 

component analysis and detection of single component points, characterised in that 

said blind extraction comprises the following steps:  

- recording two or more mixtures data X wherein a recording domain of the mixture 

data is defined by equation [I]:  

 

  ASX        [I] 

 

where S is an unknown matrix of pure components and A is an unknown mixing or 

concentration matrix, 

- storing the recorded two or more mixtures data, 

- provided that mixtures data X [I] are 1D- or 2D-NMR spectroscopy data,  

- transforming the mixtures data X into a wavelet domain by using wavelet  

transform T1 wherein two or more transformed mixtures T1(X) are represented 

by equation [II]:      

    

T1(X)=AT1(S)      [II] 

 

and pure components in the wavelet representation domain defined by equation 

[II] are sparser than in recording domain defined by equation [I], 

- detecting the single component points in the wavelet domain [II] T1 where only 

one pure component is active according to direction based criterion [V], 
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  where for the same predefined angular displacement   significantly more 

  single component points will be identified in wavelet domain [II] than Fourier 

  domain [III],    
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- estimating the number of pure components S present in the mixtures using two 

out of n 2 mixtures from the set of detected single component points in 

wavelet domain defined by equation [II] by means of a clustering function, 

- estimating the concentration matrix A from the set of detected single 

component points in wavelet domain defined by equation [II] by means of a 

data clustering algorithm,  

- transforming 1D- or 2D-NMR mixtures data [I] into frequency domain by 

using Fourier transform T2 wherein the transformed mixtures are represented 

by equation [III]: 

 

T2(X)=AT2(S)     [III] 

 

- estimating the pure components T2(S) in the frequency domain [III] by means 

of linear programming, constrained convex programming or constrained 

quadratic   programming, 

- provided that mixtures data X [I] are mass spectrometry data,  

- constructing analytical continuation of the real data X as represented in 

equation [IV] 

 

    jHX X X       [IV] 

where H(X) represents Hilbert transform of X and 1j  represents 

imaginary unit, 

- detecting the single component points in the analytical continuation [IV] where 

only one pure component is active by means of direction based criterion [V], 
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 where   is some predefined angular displacement, 

- estimating the number of pure components S present in the mixtures using any 

two out of n 2 mixtures from the set of detected single component points in 

recorded mixtures [I] by means of a clustering function, 
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- estimating the concentration matrix A from the set of detected single 

component points in recorded mixtures [I] by means of a data clustering 

algorithm,  

- estimating the pure components from recorded mixtures [I] by means of linear 

programming, constrained convex programming or constrained quadratic 

programming, and 

- presenting the pure components. 

 

2. Method according to claim 1, further comprising selecting the estimated pure 

components in accordance with the negentropy-based ranking criterion and 

presenting the selected pure components. 

  

3. Method according to claim 1 or 2, wherein the transform T1 is a wavelet transform 

with the symmlet wavelet of order 4 to 16. 

 

4. Method according to claim 2 or 3, wherein the transform T2 is a Fourier transform. 

 

5. Method according to claim 1, 2 or 3, wherein single component points are detected 

using direction based criterion [V] in wavelet domain [II], when recorded data [I] 

are NMR spectroscopy data. 

 

6. Method according to any one of the preceding claims, wherein the clustering 

function is capable of estimating the number of pure components from the set of 

detected single component points in wavelet domain [II] and any two out of n 2  

mixtures. 

 

7. Method according to any one of the preceding claims, wherein the data clustering 

algorithm is capable of estimating the concentration matrix from the set of detected 

single component points in the wavelet domain [II]. 

 

8. Method according to anyone of the preceding claims, wherein a numerical method 

is used to estimate the pure components in the frequency domain [III] that is a 

linear programming method, a convex programming method with quadratic 
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constraint (
2
-norm based constraint) or a quadratic programming method with 

1
-norm based constraint. 

 

9. Method according to claim 1, wherein single component points are detected using 

direction based criterion [V] using analytical continuation [IV], when recorded 

data [I] are mass spectrometry mixtures. 

 

10. Method according to claim 1 and 9, wherein the clustering function is capable of 

estimating the number of pure components from the set of detected single 

component points in recorded mass spectrometry mixtures domain [I] and any two 

out of n 2  mixtures. 

 

11. Method according to the preceding claims 1, 9 and 10, wherein the data clustering 

algorithm is capable of estimating the concentration matrix from the set of detected 

single component points in the recorded mass spectrometry mixtures domain [I]. 

 

12. Method according to the preceding claims 1, 9, 10 and 11, wherein a numerical 

method is used to estimate the pure components in the recording domain [I] that is 

a linear programming method, a convex programming method with quadratic 

constraint (
2
-norm based constraint) or a quadratic programming method with 

1
-norm based constraint. 

 

13. Method according to any one of the preceding claims, wherein said method is 

applied to the identification of the compounds in chemical synthesis, food quality 

inspection or pollution inspection, i.e. environment protection.  

 

14. Method according to any one of the preceding claims 1 to 12, wherein said method 

is applied to the identification of compounds obtained from natural sources 

(microorganisms, plants and animals), metabolites and biomarkers present in 

biological fluids (urine, blood plasma, cerebrospinal fluid, saliva, amniotic fluid, 

bile, tears, etc.) or tissue extracts. 
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15. Computer-readable medium having computer-executable instructions stored 

thereon which, when executed by a computer, will cause the computer to carry out 

a method according to any one of the preceding claims. 

 

16. System for blind extraction of more pure components than mixtures in 1D- or 2D-

NMR spectroscopy and mass spectrometry by means of sparse component analysis 

and detection of single component points, comprising:  

- a mixtures sensing device (1) for recording mixtures data X, 

- an input storing device or medium (2) for storing the mixture data X recorded 

by the mixtures sensing device (1), 

- a processor (3), wherein code is implemented or carried out for executing a 

method, according to any one of claims 1 to 14 based on the mixtures data X 

stored in/on the input storing device or medium (2),  

- an output storing device or medium (4) for storing the result of the method 

carried out by the processor. 

 

17. System according to claim 16, wherein the output storing device (4) is a printer or 

plotter and the output storing medium (4) is a memory based device that is 

computer-readable. 

 

18.  System according to claim 16 or 17, wherein the mixtures sensing device (1) is a 

nuclear magnetic resonance (NMR) spectrometer or mass spectrometer.  
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ABSTRACT 

The present invention generally relates to a computer-implemented system for processing data 

for the purpose of blind extraction of more pure components than mixtures recorded in the 

fields of 1D- or 2D-NMR spectroscopy and mass spectrometry. Specifically, the invention is 

related to the application of the method of sparse component analysis in combination of 

detection of single component points to blind decomposition of NMR spectroscopy or mass 

spectrometry data X into pure components S and concentration matrix A, whereas the number 

of pure components S is greater than number of mixtures X. Spectroscopic data refers to data 

gathered by 1D- or 2D- nuclear magnetic resonance (NMR) spectroscopy or mass 

spectrometry. NMR mixtures are transformed into wavelet domain by means of wavelet 

transform T1, wherein pure components in the wavelet domain are sparser than in the 

recording domain. By means of direction based criterion single component points (SCPs) of 

the mixtures in wavelet domain are detected where only one pure component is active. These 

SCPs are used for estimation of the unknown number of pure components by means of data 

clustering function and any two out of n 2 mixtures. The same SCPs are also used for 

estimation of the concentration matrix by means of data clustering methods. The pure 

components are estimated in frequency domain by means of linear programming, convex 

programming with quadratic constraint (
2
-norm based constraint) or quadratic programming 

method with 
1
-norm based constraint. Mass spectrometry mixtures are extended to analytical 

continuation that is necessary to obtain complex signal required by direction based SCPs 

detection criterion. Identified SCPs in mass spectrometry mixtures data are used for 

estimation of the unknown number of pure components by means of data clustering function 

and any two out of n 2 mixtures. The same SCPs are also used for estimation of the 

concentration matrix by means of data clustering methods. The pure components mass spectra 

are estimated in recording m/z domain by means of linear programming, convex programming 

with quadratic constraint (
2
-norm based constraint) or quadratic programming method with 

1
-norm based constraint. The estimated pure components are ranked using negentropy-based 

criterion. Components with negentropy measure that differs 10 orders of magnitudes or more 

from the negentropy of the majority of the pure components are classified as outliers and 

eliminated. 
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Figure 1. 
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Figures 2A to 2D. 
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Figures 2E to 2G. 
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Figures 2H to 2J. 
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Figure 2K to 2N. 
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Figure 2O to 2Q. 
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Figure 2R to 2U. 
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 PC1 PC2 PC3 PC4 

PC1 1 0.5509 0.1394 0.3730 

PC2 0.5509 1 0.3051 0.5120 

PC3 0.1394 0.3051 1 0.7965 

PC4 0.3730 0.5120 0.7965 1 

Figure 2V. 

 

 PC1 PC2 PC3 PC4 

1
ˆPC  0.8931 0.4753 0.2638 0.4132 

2
ˆPC  0.5634 0.8579 0.2795 0.5366 

3
ˆPC  0.1945 0.5048 0.8990 0.7953 

4
ˆPC  0.4386 0.6124 0.8060 0.8381 

Figure 2W. 

 

 PC1 PC2 PC3 PC4 

1
ˆPC  0.8924 0.6009 0.2754 0.4602 

2
ˆPC  0.5482 0.8469 0.3107 0.5695 

3
ˆPC  0.0931 0.4101 0.8432 0.7249 

4
ˆPC  0.3108 0.3411 0.8236 0.7331 

Figure 2X. 
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Figure 3A. 
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 Figures 3B to 3F. 
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Figures 3G and 3H. 
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Figure 3I. 
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Figures 3J to 3N. 

 

 PC1 PC2 PC3 PC4 PC5 

PC1 1 0.1268 0.0456 0.0266 0.0075 

PC2 0.1268 1 0.0321 0.0332 0.0379 

PC3 0.0456 0.0321 1 0.0134 0.0030 

PC4 0.0265 0.0332 0.0134 1 0.0029 

PC5 0.0075 0.0379 0.0030 0.0029 1 

Figure 3O. 

 

 PC1 PC2 PC3 PC4 PC5 

ˆ
1PC  

0.8864 0.0455 0.0025 0.0048 0.0062 

2
ˆPC  

0.3436 0.8031 0.1824 0.0393 0.0061 

3
ˆPC  

0.0499 0.1888 0.6854 0.1838 0.0013 

4
ˆPC  

0.0080 0.0065 0.0098 0.9713 0.0013 

5
ˆPC  

0.0122 0.0157 0.0075 0.3168 0.9006 

Figure 3P. 

 


