Pregled bibliografske jedinice broj: 578826
Recurrence and transience property for a class of Markov chains
Recurrence and transience property for a class of Markov chains // Bernoulli, 19 (2013), 5B; 2167-2199 doi:10.3150/12-BEJ448 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 578826 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Recurrence and transience property for a class of Markov chains
Autori
Sandrić, Nikola
Izvornik
Bernoulli (1350-7265) 19
(2013), 5B;
2167-2199
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Foster-Lyapunov drift criterion; Harris recurrence; Markov chain; petite set; recurrence; small set; stable distribution; T-chain; transience
Sažetak
We consider the recurrence and transience problem for a time-homogeneous Markov chain on the real line with transition kernel $p(x, dy)=f_x(y-x)dy$, where the density functions $f_x(y)$, for large $|y|$, have a power-law decay with exponent $\alpha(x)+1$, where $\alpha(x)\in(0, 2)$. In this paper, under a uniformity condition on the density functions $f_x(y)$ and an additional mild drift condition, we prove that when $\liminf_{; ; ; ; |x|\longrightarrow\infty}; ; ; ; \alpha(x)>1$, the chain is recurrent. Similarly, under the same uniformity condition on the density functions $f_x(y)$ and some mild technical conditions, we prove that when $\limsup_{; ; ; ; |x|\longrightarrow\infty}; ; ; ; \alpha(x)<1$, the chain is transient. As a special case of these results we give a new proof for the recurrence and transience property of a symmetric $\alpha$-stable random walk on $\R$ with the index of stability $\alpha\in(0, 1)\cup(1, 2).$
Izvorni jezik
Engleski
Znanstvena područja
Matematika
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi projecteuclid.org projecteuclid.orgCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet