Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 578826

Recurrence and transience property for a class of Markov chains


Sandrić, Nikola
Recurrence and transience property for a class of Markov chains // Bernoulli, 19 (2013), 5B; 2167-2199 doi:10.3150/12-BEJ448 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 578826 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Recurrence and transience property for a class of Markov chains

Autori
Sandrić, Nikola

Izvornik
Bernoulli (1350-7265) 19 (2013), 5B; 2167-2199

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Foster-Lyapunov drift criterion; Harris recurrence; Markov chain; petite set; recurrence; small set; stable distribution; T-chain; transience

Sažetak
We consider the recurrence and transience problem for a time-homogeneous Markov chain on the real line with transition kernel $p(x, dy)=f_x(y-x)dy$, where the density functions $f_x(y)$, for large $|y|$, have a power-law decay with exponent $\alpha(x)+1$, where $\alpha(x)\in(0, 2)$. In this paper, under a uniformity condition on the density functions $f_x(y)$ and an additional mild drift condition, we prove that when $\liminf_{; ; ; ; |x|\longrightarrow\infty}; ; ; ; \alpha(x)>1$, the chain is recurrent. Similarly, under the same uniformity condition on the density functions $f_x(y)$ and some mild technical conditions, we prove that when $\limsup_{; ; ; ; |x|\longrightarrow\infty}; ; ; ; \alpha(x)<1$, the chain is transient. As a special case of these results we give a new proof for the recurrence and transience property of a symmetric $\alpha$-stable random walk on $\R$ with the index of stability $\alpha\in(0, 1)\cup(1, 2).$

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Građevinski fakultet, Zagreb

Profili:

Avatar Url Nikola Sandrić (autor)

Citiraj ovu publikaciju:

Sandrić, Nikola
Recurrence and transience property for a class of Markov chains // Bernoulli, 19 (2013), 5B; 2167-2199 doi:10.3150/12-BEJ448 (međunarodna recenzija, članak, znanstveni)
Sandrić, N. (2013) Recurrence and transience property for a class of Markov chains. Bernoulli, 19 (5B), 2167-2199 doi:10.3150/12-BEJ448.
@article{article, author = {Sandri\'{c}, Nikola}, year = {2013}, pages = {2167-2199}, DOI = {10.3150/12-BEJ448}, keywords = {Foster-Lyapunov drift criterion, Harris recurrence, Markov chain, petite set, recurrence, small set, stable distribution, T-chain, transience}, journal = {Bernoulli}, doi = {10.3150/12-BEJ448}, volume = {19}, number = {5B}, issn = {1350-7265}, title = {Recurrence and transience property for a class of Markov chains}, keyword = {Foster-Lyapunov drift criterion, Harris recurrence, Markov chain, petite set, recurrence, small set, stable distribution, T-chain, transience} }
@article{article, author = {Sandri\'{c}, Nikola}, year = {2013}, pages = {2167-2199}, DOI = {10.3150/12-BEJ448}, keywords = {Foster-Lyapunov drift criterion, Harris recurrence, Markov chain, petite set, recurrence, small set, stable distribution, T-chain, transience}, journal = {Bernoulli}, doi = {10.3150/12-BEJ448}, volume = {19}, number = {5B}, issn = {1350-7265}, title = {Recurrence and transience property for a class of Markov chains}, keyword = {Foster-Lyapunov drift criterion, Harris recurrence, Markov chain, petite set, recurrence, small set, stable distribution, T-chain, transience} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font