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Abstract: The paper deals with an image processing technique for texture segmentation. By
way of texture segmentation, a binary image is constructed and used to fit a line of the dominant
direction of propagation of the texture in the image plane. The texture is captured by an oblique
angle that positions the image plane in a near vertical orientation to the sea bottom plane.
The texture being recognized in the experiment is that of Posidonion Oceanicæ, the benthic
community (meadow or bed) of the Neptune grass Mediterranean endemic. It is the motivation
of this paper for the dominant direction of propagation of the texture segment in the image
plane to be used as a measure of the true direction of propagation of the upper border of
Posidonion Oceanicæ in a feedback control loop that will enable the vehicle to autonomize the
task of upper border tracking. The algorithm for extraction features four distinct phases: multi-
resolution analysis using wavelets, vector quantization, post-processing of the obtained binary
image and the extraction of the line parameters. The classification and line-fitting procedure
are computationally optimized and made more robust by using weights in the Least Squares
fitting procedure, and using nonlinear binary-image domain processing.

Keywords: image segmentation, texture segmentation, texture classification, wavelet
transform, vector quantization, nonlinear binary-image transforms.

1. INTRODUCTION

Today, a marked challenge in successfully handling the
issues of sustainable, nature-friendly and ecologically re-
sponsible maritime economic growth attuned with EC
regulations (European Council and European Parliament,
2008, 2006) inter alia, is an implied unprecedented level of
capability of collecting broad-spectrum, varied and time-
actual biological and ecological data in the sea. Marine
robotics are an important facilitator of this data-collection
capability. Various types of marine robots can be used
to support, or wholly autonomously carry out complex
data-acquisition tasks underwater. An example of such
a use of off-the-shelf, commercial micro- and mini-scale
remotely operated vehicles (ROVs) (VideoRay LLC, 2011;
SeaBotix Ltd., 2011; Seamor Marine LLC, 2011) is au-
tonomous tracking of Posidonion Oceanicæ beds. When
ROVs’ hydroacoustic localisation systems (Tritech Inter-
national, 2011; Sonardyne, 2011) are used to resolve the
georeferenced position of the ROV along the tracked bor-
der, geo-tagged contours of this important angiosperm bio-
indicator habitat, constructed by Neptune grass, a prolific
Mediterranean endemic, are obtained.

⋆ This research was made possible by the EU 2008-1-REGPOT
grant for the “Developing the Croatian Underwater Robotics Re-
search Potential” project, grant agreement no. 229553, and by the
non-government organization Center for Underwater Systems and
Technologies (CUST).

This paper presents a foundation for the eventual design
of a closed loop controller with the above-mentioned ca-
pability. The paper deals with autonomous image analysis
and recognition of the dominant line of division in between
the Posidonion and the surrounding seabed. The images
analyzed feature a view from a PAL analogue TV-camera
(digitized by an off-the-shelf DVR to a 640 × 480 RGB
image) of the Seamor 300F ROV (Seamor Marine LLC,
2011; Barisic et al., 2010) being piloted close to the ground
(ca. 0.5 m – 1.5 m), with a slight deflection of the pan-
ning joint (ca. –10◦ – –15◦). The presented analysis was
performed off-line. The majority of the method, barring
some newly introduced processing techniques such as the
melting operation, are based on (Chandler, 2003).

Section 2 presents the multiresolution analysis that is the
foundation of classifying and segmenting the image accord-
ing to the dominant texture motifs that can be expected in
the Posidonion. Section 3 presents the vector quantization
technique that is used to compress the amount of data
while retaining the analytical power of the data required
to segment the image properly, and the histogram-based
segmentation mechanism. Section 4 presents a chain of
binary image morphological operations that are necessary
to make the segmentation robust and useful for line-fitting.
Section 5 presents the operations used to fit a line through
the longest, dominant, mostly near-vertical or diagonal
edge of the Posidonion w.r.t. the remainder of the sea
bottom, in the image plane. Section 6 concludes the paper.



2. MULTIRESOLUTION ANALYSIS

The first block in the presented scheme of the overall sys-
tem is the multiresolution analysis (MRA). The multires-
olution analysis is concerned with extracting the features
of an image that appear in different spatial scales (levels of
resolution). The one reproduced here, using the Discrete
wavelet transform (DWT) is concerned with extracting the
graininess of the textures in the image. This is extracted
by any procedure that awards high values to pixels of a
neighborhood of an image wherein sharp rises and falls
in the level of intensity occur. Alternatively, a separate
layer can keep track of the pixels (by awarding them high
values) wherein no such sharp rises and falls are present,
but either more gradual dynamics of intensity or a flat
level throughout is present. In a DWT-based MRA, each
row, and alternatively, column of the image is subjected
to a convolution with a scaling or wavelet function. This
procedure, applied once, results in 4 (22 – two directions:
row-wise and column-wise vs. two functions, scaling and
wavelet) resultant 2D arrays of real coefficients for each of
the pixels of the original image. The images are marked
(LL, LH, HL, HH) where the first letter signifies the “low-
pass” or “highpass” nature of the convolution across rows,
and the second one the nature of the convolution across
columns. The “lowpass” vs. “highpass” marks whether the
convolution attenuates or accentuates, respectively, the
graininess of textures. In the case of row-wise convolution,
this differentiates between vertically grainy (or vertically
homogeneous) textures, and in the case of column-wise
convolution, it differentiates between horizontally grainy
(or homogeneous) textures. The LL array (interpreted as
an image by fixing the dynamic range of values to 0 – 255)
is just the blurred image. The HL image (accentuating
graininess in the vertical and attenuating graininess in the
horizontal) will tend to award higher coefficients to the
patches of textures that feature predominantly vertical
motifs. The LH image vice versa. The HH image awards
higher coefficient values to textures composed of diagonal
motifs. A demonstration of such a first level MRA of a
stock image is displayed in figure 1. Each of the repro-

(a) LL image (b) LH image

(c) HL image (d) HH image

Fig. 1. Discrete wavelet transform-based Multiresolution
analysis

duced arrays can be sequentially interpreted further as
an image, to which this basic step of MRA is re-applied.
This process, resulting in a power-of-four, i.e. 4n for n
the number of levels of analysis, multiplication of images,

produces images wherein textures are accentuated w.r.t.
the dominant direction of their motifs at varying spatial
scales. Only with the introduction of levels beyond the 1st
one can it be said that the procedure possesses a truly
multiresolution nature.

2.1 Choice of Wavelets and MRA Coefficients

Due to practical and near real-time processing considera-
tions, MRA will only be applied at level 2. The wavelet and
scaling functions used are coiflets, (Beylkin et al., 1991),
and listed in (1, 2).

s(k) =

11∑
t=0

st · δ(k − t)

= 0.0231751934774337 · δ(k)
+ 0.0586402759669371 · δ(k − 1)

− 0.0952791806220162 · δ(k − 2)

+ 0.5460420930695330 · δ(k − 3)

+ 1.1493647877137300 · δ(k − 4)

+ 0.5897343873912380 · δ(k − 5)

− 0.1081712141834230 · δ(k − 6)

− 0.0840529609215432 · δ(k − 7)

+ 0.0334888203265590 · δ(k − 8)

+ 0.0079357672259240 · δ(k − 9)

− 0.0025784067122813 · δ(k − 10)

− 0.0010190107982153 · δ(k − 11) (1)

ψ(k) =
11∑
t=0

ψt · δ(k − t)

= −112−ts11−t · δ(k − t) (2)

IrL(i, j) = s(λ) ∗ I(i, λ)

=
6∑

ι=−5

s5+ιI(i, j + ι) ∀i = 1 . . .m (3)

IrH(i, j) = ψ(λ) ∗ I(i, λ)

=

6∑
ι=−5

ψ5+ιI(i, j + ι)∀i = 1 . . .m (4)

IcL(i, j) = s(λ) ∗ I(λ, j)

=

6∑
ι=−5

s5+ιI(i+ ι, j)∀j = 1 . . . n (5)

IcH(i, j) = ψ(λ) ∗ I(λ, j)

=

6∑
ι=−5

ψ5+ιI(i+ ι, j)∀j = 1 . . . n (6)

Using (2 – 6), the images, where the original is a 2D
array of unsigned 8-bit integers denoting intensities 0
– 255 (a black and white image) I = [I(i, j)], and
the daughter-images are 2D arrays of real coefficients
I(LL,HL,LH,HH)(i, j), with i being the index of rows and
j of columns are convolved to ultimately produce the 2nd
generation granddaughter images.

Each of the 42 = 16 second-level (granddaughter) images is
obtained by filtering using one of (3, 4) followed by one of



(5, 6) for the first level of MRA (producing 41 = 4 daughter
images of the original), and repeating such a choice at the
second level. Even among those 16 images, only the select
ones, most representative of the textures inherent in the
recognition of the chosen benthic habitat, the Posidonion
oceanicæ, will be actually calculated. Since the nature of
the problem closely coincides with (Chandler, 2003), follow
the author’s lead in this respect, choosing 5 out of the
16 resultant granddaughter-images for further analysis,
k = {2, 4, 6, 7, 8} indexed by a binary scheme wherein
“L” is equal to the 0 binary digit and “H” is equal to 1
(so “LLLL” = 0000x0 = 0, “HHHH” = 1111x0 = 15). The
5 chosen 2D arrays of reals can be stacked, whereby each
pixel of the stacked array can be conceived as a 5D vector
of reals c(i, j) = [c2(i, j)c4(i, j)c6(i, j)c7(i, j)c8(i, j)]T ∈
R5. This proposed concept of segmentation relies on the
ability of c(i, j) to encapsulate well and robustly the
nature of “Posidonion-likeness”. If so, there exists some
metric on R5, d : R5 → R+ such that there ex-

ist a pair (c
(rep)
P , c

(rep)
NP ) that for a significant majority,

in the statistical sense, and in the practical sense, of

c(i, j), d(c(i, j), c
(rep)
P ) ≤ d(c(i, j), c

(rep)
NP ⇒ (i, j) is a

pixel representing sea bottom overgrown with Posidonion,

and d(c(i, j), c
(rep)
NP ) ≤ d(c(i, j), c

(rep)
P ) ⇒ (i, j) is a pixel

of something other than the sea bottom overgrown with
Posidonion. We assume this to be true.

2.2 Envelope Detection

In order to make the classification more robust, the row- or
column-wise waveforms obtained by (3 – 6) must further
be processed. As demonstrated in figure 2, convolving with
the wavelet function of an image row (or column) will
result in strong dynamics of intensity wherever a pattern
of matching spatial frequency is encountered.

The amount of expression of the particular texture mo-
tif is evident in the local peak-to-peak amplitude of the
signal. In essence, the peak-to-peak amplitude expresses
a qualitative measure of presence of the particular tex-
ture motif (vertical or horizontal, of a spatial frequency
matching the possibly down-sampled original image w.r.t.
the wavelet or scaling function) in the local region of the
image. The dynamics of intensity in between the local
peaks doesn’t contribute textural information. Therefore,
it is sensible to process the convolved waveform by running
an envelope detection on it. There are many possible
envelope detectors, and the best ones in terms of trade-off
of complexity, lag and efficiency are the ones based on the
Hilbert transform (Hahn, 1996). In this work, however, an
envelope detector represented in fig. 2 in a dashed outline
is a simple peak hold of the absolute value in between each
pair of zero-crossings of the signal.

3. VECTOR QUANTIZATION

The steps covered by this stage present us with an issue
– the sheer number of feature-relevant data that needs
to be processed by the analyzer in or near real-time.
The vector quantization (Gersho and Gray, 1991) (VQ)
is used to decrease the amount of information being
processed whilst still retaining key textural information.
VQ presents a coding algorithm whereby finite-dimensional
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Fig. 2. Results of convolving a row of the image in fig. 1
with wavelet function (2).

vectors of reals are encoded into codewords (integer indices
into a codebook). This coding uses the arguments of
the minimum Euclidean distance between a vector and a
codebook entry. The codebook is constituted out of a small
set of representative data vectors that best capture the
local variations of the entire universe of data, irrespective
of a frame of reference. In the case of the problem at hands,
this reduces the amount of information from 640×480×5×
8 B = 11.72M MiB to as little as 640× 480 B = 300 kiB,
for the total maximum compression ratio of 1:40. This
assumes the additional existence of a codebook of at most
256 × 5 × 8 B = 10 kiB. The operating assumption is
that the codebook contains less than 28 = 256 entries
(which can be indexed by an unsigned integer stored in
1 B). An efficient and well-known algorithm (Dasarathy,
1991) of the k Nearest Neighbours (kNN) search can be
applied to building up the codebook which has power-of-2
entries. The presented system uses a codebook of 24 = 16
vectors, obtained by the kNN search algorithm pseudo-
coded in table 1, performed on the data constituting a
training set. Figure 3 displays the result of the training
procedure, visualized in a plane spanned by the 2 principal
components of the dataset used. When the system is
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Fig. 3. The progression of the VQ kNN codebook-building
algorithm, visualized in a plane spanned by the 2
principal components.

working in classification, rather than training mode, the
5D feature vectors are assigned a code κij indexing the



Table 1. The kNN VQ codebook-building al-
gorithm.

Initialization

1. Merge 2 sets of 5D vectors of reals specifying Posidonia
and Non-Posidonia pixels (keeping them tagged)

2. Pick 10,000 random samples from the set C = CNP ∪ CP into
the training set CV Q

3. Calculate centroid γ0 of the entire set CV Q

4. Build the trivial, initial codebook set Γ = {γ0}

Implementation

1. For k = 1 . . . log2(16)
2. For each member of Γ, indexed by i
3. Randomize direction n̂ (a unitary vector in 5D)
4. Randomize deviation ε (a scalar)

5. Generate 2 5D points γ
(r, l)
i = γi ± εn̂

6. Partition Ci, the part of CV Q that the current codebook

codes as symbol i w.r.t. γi ∈ Γ, into (C(r)
i , C(l)

i )

according to arg min∥c− γ
(r, l)
i ∥, ∀c ∈ CV Q

7. Assign to the new value of γi the centroid of C(r)
i

8. Add to Γ a new vector γg , g = i+ 24−k, the centroid

of C(l)
i

9. End for each
10.End for

codeword from the codebook Γ that is the nearest to each
vector.

3.1 The Statistical Model

The set of codes K(C) of the entire training set C = CP ∪
CNP (a random section of which was used in Algorithm
in table 1), is used, together with the ground-truthed
tags for each of the pixels contributing c(i, j) ∈ C of
(“Posidonia”,“Not Posidonia”) to construct the classifica-
tion histogram. The histogram resulting from dividing the
number of occurrences of each individual κij ∈ K(C), κij ∈
{0, . . . , 15} with the total number of pixels used to con-
struct C is given in fig. 4.

Ideally, the statistical model would feature a large discrep-
ancy between the likelihoods that a codebook index κij
denotes a pixel of Posidonia vs. Not Posidonia consistently
throughout the codebook. However, that is not the case in
a realistic scenario. As a consequence, the “raw” classi-
fication, presented in fig. 5, resulting in a binary image
Braw = [Braw(i, j)] is non-ideal, featuring a spurious
proliferation of both false positives and false negatives.

4. POST-PROCESSING

A far better quality of classification than the one displayed
in fig. 5 is needed for robust fitting of a line in the
image plane representing the border of the Posidonion
upper border. Such classification may be achieved by a
more involved statistical model, or a different paradigm
altogether, used for segmentation. However, in the interest
of processing speed and the optimal use of computing
resources, we resort at this stage to morphological oper-
ations (Shih, 2010) on the binary image, however subop-
timal it has turned out to be. First the image Braw is
morphologically opened using a default structural element
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Fig. 4. The statistical model obtained from ground-truthed
sets of VQ codes in hand-classified regions of interest
of images from a training set.

Fig. 5. The raw classification results based on the VQ
codebook represented in 3 and the statistical model
in 4.

Table 2. The post-processing parameters used.

µ = 0.35 νobj = 0.5
νhole = 0.2 µWLS = 0.35

of a 3 × 3 matrix of 1s to remove sporadic misclassifica-
tion. Next, the image is “melted” using a scalar normal
parameter µ ∈ (0, 1), cf. sec. 4.1, producing a melted
image Bmel = [Bmel(i, j)]. The obtained image is pruned
of all 8-connected binary image objects with areas less
than the νobj proportion of the total positive (1-valued)
area of the image A1(Bmel) =

∑m
i=1

∑n
j=1Bmel(i, j). This

produces the image Bpr = [Bpr(i, j)] Finally, holes in
the produced image are flooded in any remaining larger
objects (intentionally it should be just the one object
representing the captured expanse of the Posidonion on
the sea bottom) that have survived the cull. The cutoff
area for the size of holes to be closed is up to νhole of
the total negative (0-valued) area of the original image,
A0(Bpr) = mn − A1(Bpr) = mn −

∑m
i=1

∑n
j=1Bpr(i, j).

The resulting image is Bfl = [Bfl(i, j)]. The resulting
images in this chained post-processing operations are given
figure 6. The parameters (µ, νobj , νhole) used are specified
in table 2.

4.1 The Melting Operation

In the interest of clearing up the raw classified binary
image Braw, we introduce a novel intermediary step in the
post-processing of the binary, classified image, and call it



(a) Melted image, Bmel. (b) Eliminated small objects,
Bpr.

(c) Eliminated holes, Bfl.

Fig. 6. The chain of post-processing binary image morpho-
logical transforms.

“melting”. The visual appearance of the procedure is as
if the positive (1-valued) areas of the binary image were
agglomerations of wax to which heat was applied. The wax
spreads viscously over surrounding areas, flattening out
and covering more image area.

The procedure relies on a pair of 2D array accumulators
of reals, inteded for row- and column-wise agglomerations
of “wax”. These 2 arrays can be construed as (color-
map) pseudo-images containing a measure of row- or
column-wise “clumpiness”. Each row (or column) of the
array(s) is excited by a progression of variously positioned
Gaussian signals. These are centered over centroids of
each separate aggregation of 1s (row-wise or column-wise,
respectively). The height of each is equal to the area (i.e.
a sum of 1s) of the aggregation. The standard deviation
of each is one third of the larger of the two distances
in between the current centroid and the preceding and
following ones. This procedure is illustrated in figure 7.
The finalized value, given by the full line in fig. 7.a) of
the individual row (or column) of either pseudo-image
is arrived at by summing over all excitations. A single
finalized pseudo-image in Figure 8.a) is then produced
by the RMS 1 of the row- to the column-wise pseudo-
image. Before classification back to a binary image domain,
a Gaussian 2D FIR filter is used for smoothing that
eliminates the textile-like, gridded appearance of the total
accumulator. The filter’s impulse response is given in fig.
8.b). The resulting pseudo-image is displayed in fig. 8.c).
The classification, resulting in the ”melted” appearance
in fig. 6.a) w.r.t. the original binary image in fig. 5 is
obtained by tresholding, where the µ parameter specifies
the top proportion of values in the pseudo-image that will
be classified as 1s.

5. LINE-FITTING

The finalized binary image in fig. 6.c) is used to fit a
line through the dominant edge in the image. The line-
fitting consists of two intermediary steps: detecting an
edge point e = [ie je]

T, ie = 1 . . .m to each row of the
image Bfl, and using the Weighted Least Squares (WLS)
algorithm (Björck, 1996) to fit a representative line to the
thus constructed set of edge-points E = {e}.
1 The root of the mean of squares.
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Fig. 7. Illustration of the excitation of the two component
pseudo-images of the melting procedure.

5.1 Edge detection

The edge-point fitting technique is taken from (Chandler,
2003) to be simple, human-readable in code and easy
to implement. Memory and processing power of contem-
porary computers allow for efficient performance of this
rather näıve fitting. Each row of the image, consisting
of n columns, is compared against two families of step
functions S(j − j0) and 1 − S(j − j0), where S(j) is the
Heaviside function (across the columns, in any single row
of the image). For the given row-index ie = 1 . . .m, an
edge-point je is specified by the column-index j that is
the minimum of the two minimizations in (7).
j(r)e = argminj0=0...n+1(

n∑
j=1

|I(i, j)− S(j − j0)|)

j(l)e = argminj0=0...n+1(

n∑
j=1

|I(i, j)− 1 + S(j − j0)|)

(7)
If the result of the minimization yields j ∈ {0, n+ 1}, the
edge-point with the current row-index ie is omitted from
the set E . Such an ie-th row is best approximated by a
0-valued or 1-valued function throughout.

5.2 WLS Line-fitting

Finally, the analysis for each frame of the ROV pilot cam-
era is concluded by fitting to the image a line that captures
the direction of the border of the Posidonion oceanicæ.
The stated goal of this research is that the automatic
line-fitting procedure be used to provide feedback to the
control and guidance of the ROV. Therefore, the algorithm
should be influenced more by the geometry of the habitat’s
boundary nearer the camera. Taking into account the
typical view-point of the ROVs camera with respect to the



(a) Final melting pseudo-image (the total accumulator).
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Fig. 8. Illustration the final steps of the melting procedure.

scene and the sea bed (as evident from presented images),
pixels closer to the ROV are situated at the bottom of
the image. As a consequence, weights that accentuate the
edge-points nearer the bottom of the image are used in (9,
10). With those, a WLS fitting of the line is performed by
(11), obtaining the parameters (kline, jline), and thus fully
specifying the line (8).

jline = kline · iline + bline (8)

ωi =
2 · (n+ 1− i)

n · (n+ 1)
(9)

wk =
ωargi E∑
{argi E}

ωi
, k = 1 . . . card E (10)

Let : X =[[ie] 1card E×1]

y =[je]

W =diag([wk])

Then :

[
kline
bline

]
=(XTW−1X)−1XTW−1y (11)

In order to make the fit more robust, outlying edge-points
are then disregarded and WLS re-applied to a reduced set

E ′ = E \ Eout. Outlying edge-points making up the set
Eout are determined by tresholding the histogram of their
distance from the obtained line. µWLS specifies the upper
proportion of the distances that are far enough away to be
considered outliers, and is listed in table 2. The distance of
an edge-point to the fitted line, on which this tresholding
is based, is specified by (12).

dk =
klinei

(k)
e + j

(k)
e − bline√

k2line − 1
, k = 1 . . . card E (12)

The finalized extracted and fitted line is represented in
figure 9.

Fig. 9. The result of the texture-based detection of a well
defined upper boundary of Posidonion oceanicæ.

5.3 Re-Parametrization for Navigation and Guidance Purposes

The line parameters obtained by the WLS procedure in the
preceding subsection don’t represent the best parameter
set for the use of this system in the feedback of a heading
and forward speed controller of a guided ROV. Considering
the substance of the guidance problem, the distinguishing
feature of the ROV being on proper course w.r.t. the
border of the P. oceanica bed is that the line is vertical and
nearly in the middle of the image. So, the introduced line,
parameterized by (kline, jline) will be re-parameterized
into (Φ, l). Here, Φ will be the angle offset from the vertical
(with positive offset in the clockwise direction), defined in
(14) and l a signed distance of the line from the image
center defined in (13). In that respect, both are closed
to zero for a vertical line in the middle of the image, so
the controller based on them would also be at a static
operating point. These parameters are very similar to the
Hough parameters (Hough and Powell, 1960) of the fitted
line. The sign of l will be provided by whether the line
passes underneath or above the image center. The absolute
value of l, i.e. the distance of the line from the image center
d0 can be obtained by inserting (320,240) into (12).

l =

{
kline · 320 + bline > 240 : −dcen
kline · 320 + bline ≤ 240 : dcen

(13)

Φ = sgn(kline) ·
(
| arctg(kline)| −

π

2

)
(14)

6. CONCLUSION

A system for the automatic recognition of a well-defined
and well-structured border of Posidonion oceanicæ, the



habitat of Neptune grass (Posidonia oceanica), a Mediter-
ranean endemic of high environmental value, with sur-
rounding bedrock, sediment or various other ground-
covering habitats was presented. The system identifies
the border as a best-fitted line. The angle of this line in
the image plane of the ROV camera, and the distance
of the line to the midpoint of the image can be used
for feedback, to allow the ROV to autonomously follow
such a border. The system uses digitized images from a
PAL-TV analogue low-fidelity color camera. The system
uses a processing chain in which the most computationally
expensive step is themultiresolution analysis (MRA) using
wavelets. For each pixel, 5 coefficients (chosen out of the
16 possible resulting coefficient arrays of a 2-level MRA)
are stacked into coefficient vectors and subjected to vector
quantization. A simple statistical model is then used to
assign each code from the VQ codebook to being either
Posidonia or Not Posidonia. Subsequently, morphological
operations on the binary image are supplemented by a
novel melting operation in order to make the classification
more robust.

Future work will include the realization of the algorithm
in optimized C++ code, using up-to-date software engi-
neering techniques and available fast and resource-optimal
SDKs (such as OpenCV), thus bringing the performance to
real-time. This will allow the code to fit the line along the
border of the observed Posidonion within the typical sam-
pling time of ROV control systems – 0.1s. In that respect,
a feedback loop will be closed using the entire described
chain of image processing operations as a vision-based
software sensor. A research into how well self-organizing
maps (SOMs) can handle the classification step instead
of the VQ approach will be undertaken. Various other
wavelets, in addition to the coiflets specified by the scaling
and wavelet functions (1, 2) will be tested.
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