Pregled bibliografske jedinice broj: 578620
Texture Segmentation Applied to P. Oceanica Beds' Upper Boundary Tracking by ROVs
Texture Segmentation Applied to P. Oceanica Beds' Upper Boundary Tracking by ROVs // Proceedings of the 2012 IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles / Tasso de Figueiredo Borges de Sousa, J. ; Toal, D. (ur.).
Porto: Faculdade de Engenharia da Universidade do Porto, 2012. str. 318-324 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 578620 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Texture Segmentation Applied to P. Oceanica Beds' Upper Boundary Tracking by ROVs
Autori
Barišić, Matko ; Nađ, Đula ; Vasilijević, Antonio
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2012 IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles
/ Tasso de Figueiredo Borges de Sousa, J. ; Toal, D. - Porto : Faculdade de Engenharia da Universidade do Porto, 2012, 318-324
ISBN
9783902823199
Skup
2012 IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles
Mjesto i datum
Porto, Portugal, 10.04.2012. - 12.04.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
image segmentation ; texture segmentation ; texture classification ; wavelet transform ; vector quantization ; nonlinear binary-image transforms
Sažetak
The paper deals with an image processing technique for texture segmentation. By way of texture segmentation, a binary image is constructed and used to fit a line of the dominant direction of propagation of the texture in the image plane. The texture is captured by an oblique angle that positions the image plane in a near vertical orientation to the sea bottom plane. The texture being recognized in the experiment is that of Posidonion Oceanicae, the benthic community (meadow or bed) of the Neptune grass Mediterranean endemic. It is the motivation of this paper for the dominant direction of propagation of the texture segment in the image plane to be used as a measure of the true direction of propagation of the upper border of Posidonion Oceanicae in a feedback control loop that will enable the vehicle to autonomize the task of upper border tracking. The algorithm for extraction features four distinct phases: multiresolution analysis using wavelets, vector quantization, post-processing of the obtained binary image and the extraction of the line parameters. The classification and line- fitting procedure are computationally optimized and made more robust by using weights in the Least Squares fitting procedure, and using nonlinear binary-image domain processing.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb