Pregled bibliografske jedinice broj: 575899
A Comparison of Feed-forward and Recurrent Neural Networks in Time Series Forecasting
A Comparison of Feed-forward and Recurrent Neural Networks in Time Series Forecasting // Conference Proceedings IEEE-CIFEr 2012 / Yager, R. ; Golan, R. (ur.).
New York (NY): IEEE Computational Intelligence Society, 2012. str. 119-124 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 575899 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Comparison of Feed-forward and Recurrent Neural Networks in Time Series Forecasting
Autori
Brezak, Danko ; Baček, Tomislav ; Majetić, Dubravko ; Kasać, Josip ; Novaković, Branko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Conference Proceedings IEEE-CIFEr 2012
/ Yager, R. ; Golan, R. - New York (NY) : IEEE Computational Intelligence Society, 2012, 119-124
Skup
IEEE-CIFEr 2012
Mjesto i datum
New York City (NY), Sjedinjene Američke Države, 29.03.2012. - 30.03.2012
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Static neural network; Dynamic neural network; Time series forecasting; Learning algorithms comparison
Sažetak
Forecasting performances of feed-forward and recurrent neural networks (NN) trained with different learning algorithms are analyzed and compared using the Mackey–Glass nonlinear chaotic time series. This system is a knownbenchmark test whose elements are hard to predict. Multi–layer Perceptron NN was chosen as a feed-forward neural network because it is still the most commonly used network in financial forecasting models. It is compared with the modified version of the so-called Dynamic Multi–layer Perceptron NN characterized with a dynamic neuron model, i.e., Auto Regressive Moving Average filter built into the hidden layer neurons. Thus, every hidden layer neuron has the ability to process previous values of its own activity together with new input signals. The obtained results indicate satisfactory forecasting characteristics of both networks. However, recurrent NN was more accurate in practically all tests using less number of hidden layer neurons than the feed-forward NN. This study once again confirmed a great effectiveness and potential of dynamic neural networks in modeling and predicting highly nonlinear processes. Their application in the design of financial forecasting models is therefore most recommended.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo
POVEZANOST RADA
Projekti:
120-1201842-3048 - Umjetna inteligencija u upravljanju složenim nelinearnim dinamičkim sustavima (Kasać, Josip) ( CroRIS)
120-1201948-1945 - Inteligentno vođenje obradnih sustava (Majetić, Dubravko, MZOS ) ( CroRIS)
Ustanove:
Fakultet strojarstva i brodogradnje, Zagreb
Profili:
Branko Novaković
(autor)
Dubravko Majetić
(autor)
Tomislav Baček
(autor)
Danko Brezak
(autor)
Josip Kasać
(autor)