Pregled bibliografske jedinice broj: 575397
Supplier Short Term Load Forecasting using Support Vector Regression and Exogenous Input
Supplier Short Term Load Forecasting using Support Vector Regression and Exogenous Input // Journal of electrical engineering, 62 (2011), 5; 280-285 doi:10.2478/v10187-011-0044-9 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 575397 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Supplier Short Term Load Forecasting using Support Vector Regression and Exogenous Input
Autori
Matijaš, Marin ; Vukićević, Milan ; Krajcar, Slavko
Izvornik
Journal of electrical engineering (1335-3632) 62
(2011), 5;
280-285
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
supplier; exogenous input; short term load forecasting; support vector regression; electricity market
Sažetak
In power systems, task of load forecasting is important for keeping equilibrium between production and consumption. With liberalization of electricity markets, task of load forecasting changed because each market participant has to forecast their own load. Consumption of end- consumers is stochastic in nature. Due to competition, suppliers are not in a position to transfer their costs to end-consumers ; therefore it is essential to keep forecasting error as low as possible. Numerous papers are investigating load forecasting from the perspective of the grid or production planning. We research forecasting models from the perspective of a supplier. In this paper, we investigate different combinations of exogenous input on the simulated supplier loads and show that using points of delivery as a feature for Support Vector Regression leads to lower forecasting error, while adding customer number in different datasets does the opposite
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
036-0361590-1591 - Razvoj alata za analizu tržišta električne energije (Krajcar, Slavko, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- INSPEC
- ADS Harvard
- IET
- Scopus Elsevier
- Thomson-Reuters SCIE