Pregled bibliografske jedinice broj: 575253
Recurrent sparse support vector regression machines trained by active learning in the time-domain
Recurrent sparse support vector regression machines trained by active learning in the time-domain // Expert systems with applications, 39 (2012), 12; 10933-10942 doi:10.1016/j.eswa.2012.03.031 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 575253 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Recurrent sparse support vector regression machines trained by active learning in the time-domain
Autori
Čeperić, Vladimir ; Gielen, Georges ; Barić, Adrijan
Izvornik
Expert systems with applications (0957-4174) 39
(2012), 12;
10933-10942
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
support vector machines; support vector regression; recurrent models; sparse models; active learning
Sažetak
A method for the sparse solution of recurrent support vector regression machines is presented. The proposed method achieves a high accuracy versus complexity and allows the user to adjust the complexity of the resulting model. The sparse representation is guaranteed by limiting the number of training data points for the support vector regression method. Each training data point is selected based on the accuracy of the fully recurrent model using the active learning principle applied to the successive time-domain data. The user can adjust the training time by selecting how often the hyper-parameters of the algorithm should be optimised. The advantages of the proposed method are illustrated on several examples, and the experiments clearly show that it is possible to reduce the number of support vectors and to significantly improve the accuracy versus complexity of recurrent support vector regression machines.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
036-0361621-1622 - Kvaliteta signala u integriranim sklopovima s mješovitim signalom (Barić, Adrijan, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Cambridge/Computer and Information Abstracts
- SCISEARCH
- Scopus