Pregled bibliografske jedinice broj: 562415
Machine learning applied to quality management - A study in ship repair domain
Machine learning applied to quality management - A study in ship repair domain // Computers in industry, 58 (2007), 5; 464-473 doi:10.1016/j.compind.2006.09.013 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 562415 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine learning applied to quality management - A study in ship repair domain
Autori
Srdoč, Alira ; Bratko, Ivan ; Sluga, Alojzij
Izvornik
Computers in industry (0166-3615) 58
(2007), 5;
464-473
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
quality management; knowledge acquisition; deep quality concept; delivery time estimate; dock works
Sažetak
The awareness about the importance of knowledge within the quality management community is increasing. For example, the Malcolm Baldrige Criteria for Performance Excellence recently included knowledge management into one of its categories. However, the emphasis in research related to knowledge management is mostly on knowledge creation and dissemination, and not knowledge formalisation process. On the other hand, identifying the expert knowledge and experience as crucial for the output quality, especially in dynamic industries with high share of incomplete and unreliable information such as ship repair, this paper argues how important it is to have such knowledge formalised. The paper demonstrates by example of delivery time estimate how for that purpose the deep quality concept (DQC)—a novel knowledge-focused quality management framework, and machine learning methodology could be effectively used. In the concluding part of the paper, the accuracy of the obtained prediction models is analysed, and the chosen model is discussed. The research indicates that standardisation of problem domain notions and expertly designed databases with possible interface to machine learning algorithms need to be considered as an integral part of any quality management system in the future, in addition to conventional quality management concepts.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
016-0161199-0864 - Adaptibilnost visokotehnoloških organizacija (Kliček, Božidar, MZOS ) ( CroRIS)
Ustanove:
Fakultet organizacije i informatike, Varaždin
Profili:
Alira Srdoč
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus