Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 540603

Exact treatment of generalized modifications of finite-dimensional systems by the LRM approach


Živković, Tomislav P.
Exact treatment of generalized modifications of finite-dimensional systems by the LRM approach // Journal of mathematical chemistry, 49 (2011), 1; 35-78 doi:10.1007/s10910-010-9730-2 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 540603 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Exact treatment of generalized modifications of finite-dimensional systems by the LRM approach

Autori
Živković, Tomislav P.

Izvornik
Journal of mathematical chemistry (0259-9791) 49 (2011), 1; 35-78

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Interaction of quantum systems ; Low Rank Modification ; Diagonalization ; Generalized eigenvalue equation ; Generalized modification of quantum systems

Sažetak
LRM (Low Rank Modification) is a mathematical method that produces eigenvalues and eigenstates of generalized eigenvalue equations. It is similar to the perturbation expansion in that it assumes the knowledge of the eigenvalues and eigenstates of some related (unperturbed) system. However, unlike perturbation expansion, LRM produces correct results however large the modification of the original system. LRM of finite-dimensional systems is here generalized to the combined (external and internal) modifications. Parent n-dimensional system A n containing n eigenvalues λ i and n eigenstates |Φi⟩ is described by the generalized n × n eigenvalue equation. In an external modification system A n interacts with another ρ-dimensional system B ρ which is situated outside the system A n . In an internal modification relatively small σ-dimensional subsystem of the parent system A n is modified. Modified system C n+ρ that contains external as well as internal modifications is described by the generalized (n + ρ) × (n + ρ) eigenvalue equation. This system has (n + ρ) eigenvalues εs and (n + ρ) corresponding eigenstates |Ψs⟩ . In LRM this generalized (ρ + n) × (ρ + n) eigenvalue equation is replaced with a (nonlinear) (ρ + σ) × (ρ + σ) equation which produces all eigenvalues εs∉{;λi}; and all the corresponding eigenstates |Ψs⟩ of C n + ρ. Another equation produces remaining solutions (if any) that satisfy εs∈{;λi}; . Those two equations produce exact solution of the modified system C n + ρ. If (ρ + σ) is small with respect to n, this approach is numerically much more efficient than a standard diagonalization of the original generalized eigenvalue equation. Unlike perturbation expansion, LRM produces exact results, however large modification of the parent system A n .

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Fizika, Kemija



POVEZANOST RADA


Projekti:
098-0982915-2942 - Razvoj matematičkih metoda za opis strukture, dinamike i reaktivnosti molekula (Babić, Darko, MZOS ) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Poveznice na cjeloviti tekst rada:

doi www.springerlink.com doi.org

Citiraj ovu publikaciju:

Živković, Tomislav P.
Exact treatment of generalized modifications of finite-dimensional systems by the LRM approach // Journal of mathematical chemistry, 49 (2011), 1; 35-78 doi:10.1007/s10910-010-9730-2 (međunarodna recenzija, članak, znanstveni)
Živković, T. (2011) Exact treatment of generalized modifications of finite-dimensional systems by the LRM approach. Journal of mathematical chemistry, 49 (1), 35-78 doi:10.1007/s10910-010-9730-2.
@article{article, author = {\v{Z}ivkovi\'{c}, Tomislav P.}, year = {2011}, pages = {35-78}, DOI = {10.1007/s10910-010-9730-2}, keywords = {Interaction of quantum systems, Low Rank Modification, Diagonalization, Generalized eigenvalue equation, Generalized modification of quantum systems}, journal = {Journal of mathematical chemistry}, doi = {10.1007/s10910-010-9730-2}, volume = {49}, number = {1}, issn = {0259-9791}, title = {Exact treatment of generalized modifications of finite-dimensional systems by the LRM approach}, keyword = {Interaction of quantum systems, Low Rank Modification, Diagonalization, Generalized eigenvalue equation, Generalized modification of quantum systems} }
@article{article, author = {\v{Z}ivkovi\'{c}, Tomislav P.}, year = {2011}, pages = {35-78}, DOI = {10.1007/s10910-010-9730-2}, keywords = {Interaction of quantum systems, Low Rank Modification, Diagonalization, Generalized eigenvalue equation, Generalized modification of quantum systems}, journal = {Journal of mathematical chemistry}, doi = {10.1007/s10910-010-9730-2}, volume = {49}, number = {1}, issn = {0259-9791}, title = {Exact treatment of generalized modifications of finite-dimensional systems by the LRM approach}, keyword = {Interaction of quantum systems, Low Rank Modification, Diagonalization, Generalized eigenvalue equation, Generalized modification of quantum systems} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font