Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 536668

Extended Trail Reinforcement Strategies for Ant Colony Optimization


Ivković, Nikola; Maleković, Mirko; Golub, Marin
Extended Trail Reinforcement Strategies for Ant Colony Optimization // Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science, 7076 (2011), 1; 662-669 doi:10.1007/978-3-642-27172-4_78 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 536668 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Extended Trail Reinforcement Strategies for Ant Colony Optimization

Autori
Ivković, Nikola ; Maleković, Mirko ; Golub, Marin

Izvornik
Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science (0302-9743) 7076 (2011), 1; 662-669

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
reinforcement strategy; pheromone trail; MAX-MIN ant system; Ant colony optimization; Swarm intelligence; combinatorial optimization; parameter settings

Sažetak
Ant colony optimization (ACO) is a metaheuristic inspired by the foraging behavior of biological ants that was successfully applied for solving computationally hard problems. The fundamental idea that drives the ACO is the usage of pheromone trails for accumulating experience about the problem that is been solved. The best performing ACO algorithms typically use one, in some sense “the best”, solution to reinforce trail components. Two main trail reinforcement strategies are used in ACO algorithms: iteration best and global best strategy. This paper extends the reinforcement strategies by using the information from an arbitrary number of previous iterations of the algorithm. The influence of proposed strategies on algorithmic behavior is analyzed on different classes of optimization problems. The conducted experiments showed that using the proposed strategies can improve the algorithm’s performance. To compare the strategies we use the Mann–Whitney and Kruskal – Wallis statistical tests.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
016-0361935-1728 - Semantičko modeliranje višeagentnih sustava (Maleković, Mirko, MZOS ) ( CroRIS)

Ustanove:
Fakultet organizacije i informatike, Varaždin,
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mirko Maleković (autor)

Avatar Url Nikola Ivković (autor)

Avatar Url Marin Golub (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Ivković, Nikola; Maleković, Mirko; Golub, Marin
Extended Trail Reinforcement Strategies for Ant Colony Optimization // Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science, 7076 (2011), 1; 662-669 doi:10.1007/978-3-642-27172-4_78 (međunarodna recenzija, članak, znanstveni)
Ivković, N., Maleković, M. & Golub, M. (2011) Extended Trail Reinforcement Strategies for Ant Colony Optimization. Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science, 7076 (1), 662-669 doi:10.1007/978-3-642-27172-4_78.
@article{article, author = {Ivkovi\'{c}, Nikola and Malekovi\'{c}, Mirko and Golub, Marin}, year = {2011}, pages = {662-669}, DOI = {10.1007/978-3-642-27172-4\_78}, keywords = {reinforcement strategy, pheromone trail, MAX-MIN ant system, Ant colony optimization, Swarm intelligence, combinatorial optimization, parameter settings}, journal = {Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science}, doi = {10.1007/978-3-642-27172-4\_78}, volume = {7076}, number = {1}, issn = {0302-9743}, title = {Extended Trail Reinforcement Strategies for Ant Colony Optimization}, keyword = {reinforcement strategy, pheromone trail, MAX-MIN ant system, Ant colony optimization, Swarm intelligence, combinatorial optimization, parameter settings} }
@article{article, author = {Ivkovi\'{c}, Nikola and Malekovi\'{c}, Mirko and Golub, Marin}, year = {2011}, pages = {662-669}, DOI = {10.1007/978-3-642-27172-4\_78}, keywords = {reinforcement strategy, pheromone trail, MAX-MIN ant system, Ant colony optimization, Swarm intelligence, combinatorial optimization, parameter settings}, journal = {Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science}, doi = {10.1007/978-3-642-27172-4\_78}, volume = {7076}, number = {1}, issn = {0302-9743}, title = {Extended Trail Reinforcement Strategies for Ant Colony Optimization}, keyword = {reinforcement strategy, pheromone trail, MAX-MIN ant system, Ant colony optimization, Swarm intelligence, combinatorial optimization, parameter settings} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Compendex (EI Village)
  • INSPEC
  • Zentrallblatt für Mathematik/Mathematical Abstracts
  • EI Engineering Index
  • ACM Digital Library
  • dblp
  • Google Scholar
  • IO-Port
  • MathSciNet
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font