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Abstract— Model-free single-frame blind image deconvolution 
(BID) method is proposed by converting BID into blind source 
separation (BSS), whereas sources represent the original image 
and its spatial derivatives. Continuous wavelet transform (CWT) 
is used to generate multi-channel image necessary for BSS. As 
opposed to an approach based on the Gabor filter bank, this 
brings additional options in adaptability to the problem at hand: 
through the choice of wavelet function and variation of the scale 
of the CWT. BSS is performed through orthogonality 
constrained factorization of the 3D multichannel image tensor by 
means of the higher-order-orthogonal-iteration algorithm. The 
proposed method virtually requires no information about 
blurring kernel: neither model nor size of the support. The 
method is demonstrated on experimental gray scale images 
degraded by de-focusing and atmospheric turbulence. A 
comparable or better performance is demonstrated relative to 
blind Richardson-Lucy method that, however, requires a priori 
information about parametric model of the blur.    

I. INTRODUCTION  
Degradation of the spatial resolution of an image is caused 

by various sources (either individually or combined): 
atmospheric turbulence, defocusing,  relative motion between 
image and object planes, aberrations, etc. Restoration of the 
original image from its blurred version is referred to as image 
restoration or image deconvolution [1, 2]. In non-blind 
deconvolution the blurring kernel is given [1], while in blind 
deconvolution it is unknown [2]. In majority of the cases it is, 
however, assumed that parametric model of the blurring kernel 
is known which leads to model-based blind image 
deconvolution (BID) [3-5]. This however presumes that 
source of the image degradation is known and that is not 
always the case in practice. Also, it is not always possible to 
have at disposal multiple frames as required by multi-frame 
BID [3,4]. Due to these reasons it has been exploited 
previously whether single-frame model-free BID problem is 
possible to solve? To this end, several algorithms for single-
frame model-free BID have been demonstrated [6-10]. All 
these approaches have in common the following features: (1) 
BID is converted into BSS problem through the implicit use of 
the Taylor expansion of the shifted original image around 
origin in the image forming convolution equation [11]; (2) 
Gabor filter bank is used to generate multichannel version of 

the single-frame image. Hence, it is implicitly assumed that 
original image has certain degree of smoothness that limits 
performance of model-free BID in scenarios where 
degradation is strong and/or original image is composed of 
sharp edges [10].  

Herein, we propose continuous wavelet transform (CWT) 
[12] as a substitute for Gabor filter bank with the following 
improvements: (1) since scale of the CWT is continuous, 
number of multichannel images can be varied by varying 
resolution and support of the scale; (2) selection of wavelet 
function gives additional degree of adaptability to the problem 
at hand. Since in considered problem sources represent original 
image and its spatial derivatives they are neither sparse nor 
statistically independent. Therefore, sparseness [6] and 
statistical independence [7] based approaches yield suboptimal 
result in multi-frame BID problem. Therefore, as in [9,10] we 
use tensor factorization (TF) with orthogonality constraints 
imposed on the factors and core tensor of the Tucker3 model of 
the multichannel image tensor. In comparison with the 
independent and sparse component analysis, TF approach 
yields constraints-relaxed solution of the model-free BID 
problem. The rest of the paper is organized as follows. Model-
free BID problem with the TF based solution is formulated in 
section 2, and the CWT-based multichannel image generation 
is presented in section 3. The proposed method is demonstrated 
on experimental gray scale images degraded by defocusing and 
atmospheric turbulence in section 4, while conclusions are 
drawn in section 5.  

II. MODEL-FREE BLIND IMAGE DECONVOLUTION 

It is assumed that blurred gray scale image 1 2
0
I IR ×
+∈G , with 

I1 and I2 representing number of pixels, is degraded by space-
invariant blur, also known as point spread function (PSF), and 
described by linear image forming convolution equation: 

 

 1 2 1 2( , ) ( , ) ( , )M M

s M t M
i i s t i s i t

=− =−
= − −∑ ∑G H F    (1) 

 
where M  denotes half of the PSF support size. In equation (1) 
presence of the additive noise is ignored in order to focus on 
an essential issue: model-free BID.  It is also assumed that the 
unknown original image F is nth

 order smooth implying that it 
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is n-times differentiable at the origin (i1,i2), whereupon n 
represents the order of spatial derivatives (terms) in the Taylor 
expansion of 1 2( , )i s i t− −F around the origin (i1,i2). An 
implicit Taylor expansion of the original image F(i1-s,i2-t) 
around (i1,i2), is used to convert BID into BSS, [11] yielding: 

1 2 1 1

2 2 1 2

2
1 2 1 2 1 2 1 2 1 2

2
1 2 1 2

1( , ) ( , ) ( , ) ( , ) ( , )
2

1 1( , ) ( , ) ...
2 2

i i i i

i i i i

i s i t i i s i i t i i s i i

t i i st i i

− − = − − +

+ + −

F F F F F

F F

 (2) 

where 
1i

F , 
2i

F  
1 1i iF , 

2 2i iF  and 
1 2i iF are first- and second-order 

spatial derivatives in i1 and i2 directions respectively. By using 
(2) equation (1) can be re-written as:  

1 2

1 1 2 2 1 2

1 2 1 1 2 2 1 2 3 1 2

4 1 2 5 1 2 6 1 2

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ...
i i

i i i i i i

i i a i i a i i a i i

a i i a i i a i i

= − − +

+ + −

G F F F

F F F
 (3) 

The unknown weighting coefficients in (3) are straightforward 
to derive and are given in [6,7]. It is of great importance to 
note that blurred image (3) represents a linear combination of 
the original image and its spatial derivatives. The unknown 
weighting coefficients a1

 to a6 absorbed into themselves the 
coefficients of the PSF: { } ,( , ) M

s t Ms t =−H ,  including the support 
size parameter: M. Hence, BID could be converted to BSS 
provided that a multichannel version of the blurred image (3) 
is available.  

Instead of vectorizing multichannel image components of 
the multichannel tensor G  and performing BSS by matrix 
factorization based methods [6,7], tensor G  is factorized 
directly by using higher-order-orthogonal iteration (HOOI) 
algorithm [13]. For this purpose tensor G  is represented by 
Tucker3 model [14] as an n-mode product between the core 

tensor 1 2 ... NJ J JR × ×∈R and array factors { }3( )

1
n nI Jn

n
R ×

=
∈A : 

 (1) (2) (3)
1 2 3≈ × × ×G R A A A              (4) 

Throughout this paper it is assumed that J1=J2=J3=J, where 
{ }1 2 3min , ,J I I I≤ . Since the core tensor R   allows 

interaction of a factor with any factor in the other modes, the 
Tucker3 model is flexible in modeling complex interactions 
within the data tensor G . This, however, prevents the 
uniqueness of its decomposition  (4). However, imposing 
orthogonality constraints on array factors and all-orthogonality 
and ordering constraints on the core tensor in (4), as it is done 
by the HOOI algorithm, yields factorization that is virtually 
unique. Dimensionality analysis of the multichannel image 
tensor G  implies that A(3) corresponds with the mixing matrix 
while 

  ( )†(1) (2) (3)
1 2 3

ˆ ≈ × × = ×F R A A G A             (5) 

yields an estimate of the tensor 1 2I I JR × ×∈F comprising the 
original image and its spatial derivatives. Hence, by using 
HOOI algorithm blind separation of the original image and its 
spatial derivatives is achieved without imposing on them hard 
constraints such as mutual sparseness (disjoint support) or 
statistical independence. 
 

III. SINGLE-FRAME IMAGE DECONVOLUTION USING 
CONTINOUS WAVELET TRANSFORM 

In general, it is difficult to conduct image restoration or 
sharpening based on a single-frame image due to the lack of 
additional information for the scene. It is easier if more 
observations are available about the scene, and image details 
can be extracted from these observations. Here, we investigate 
a single-frame multi-channel image enhancement approach. 
Gabor filter bank with two spatial frequencies and four 
orientations has been used for this purpose in [6-10]. In this 
paper, we propose the use of the CWT at the proper scale a 
and shift b:  

 
3

1 21
( , ) 1 2 1 2

( , )
( , ) ( ( , ))i a b a

t i i b
i i t i i dt

a
ψ

∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫G G      (6) 

It is clear from notation in (6) that degraded image G is 
vectorized before 1D CWT is applied to it and t(i1,i2) 
represents new index in 1D representation. It follows from (6) 
that selecting scale a and shift b new set of  degraded images 
is obtained: 
 

3 3 3 1 3 2

3 1 1 3 2 2 3 1 2

1 2 1 1 2 2 1 2 3 1 2

4 1 2 5 1 2 6 1 2

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ...
i i i i i i

i i i i i i i i i

i i a i i a i i a i i

a i i a i i a i i

= − − +

+ + −

G F F F

F F F
 

     (7) 
where expressions for weighting coefficients are 
straightforward to derive and can also be found in [6,7]. In (7) 
explicit dependence of the multichannel image index i3 on 
scale a and shift b is dropped to simplify notation. In the 
experiments reported in section 4 the shift parameter b was set 
to zero.  

Hence, after CWT, a multichannel image tensor 
1 2 3

0
I I IR × ×
+∈G is obtained, which comprises blurred image G 

and (I3−1) images generated by the CWT transform.  The 
HOOI algorithm in section 3 is applied to G , and the 
decomposed image with the best quality is the final output. 
The proposed method is called CWT-HOOI algorithm. 

 

IV. EXPERIMENTAL RESULTS 
An image of the Washington Monument in Fig. 1(a) was 

used in the first experiment. Fig. 2 shows the sixteen 1D 
CWT-generated images using the Mexican hat wavelet with 
different directions and scaling factors. Basically, the 
multichannel version highlighted the details in the original 
image. However, with the increasing of the scaling factor a, 
the image was somewhat blurred, and a small scaling factor 
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(a) Original image 

                  
(b) RL (support size = 3)    (c) (support size = 5) 

 
(d) CWT-HOOI restoration 

    
a = 0.5                a = 1.0                a = 1.5                 a = 2.0 

(a) horizontal direction 

    
a = 0.5                 a = 1.0                a = 1.5                a = 2.0 

(b) vertical direction 

    
a = 0.5                  a = 1.0                 a = 1.5                a = 2.0 

(c) +45° direction 

    
a = 0.5                 a = 1.0                 a = 1.5                a = 2.0 

(d) −45° direction 

    
      a = 0.5               a = 1.0                 a = 1.5             a = 2.0

may highlight noise. So, in general, [0.5, 2] is an appropriate 
range for the value of a. The type of wavelets also played a 
role. Fig. 3 shows the Morlet wavelet generated images (along 
the horizontal direction). Compared to Fig. 2(a), the Morlet 
wavelet may yield more artifacts than the Mexican hat. Hence, 
we will use the Mexican hat wavelet hereafter. Fig. 1(b) and 
(c) show the restoration result using the blind Richardson-
Lucy (RL) method with the assumption that the PSF support 
size was three or five, and PSF had a Gaussian kernel. 
Compared to the original image in Fig. 1(a), there was no 
much difference. Fig. 1(d) is the result from CWT-HOOI 
using the image tensor consisting of the original and the 
sixteen images in Fig. 2. We can see the image was slightly 
improved with texture information in the monument becoming 
more visible. 

 

Figure 1.  The original and restored images in the first experiment. 

 

 
 

Fig. 2. CWT-generated multichannel version of Fig. 1(a) (with the Mexican 
hat wavelet). 

Fig. 3. CWT-generated multichannel version (along horizontal direction) of 
Fig. 1(a) (with the Morlet wavelet). 
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(a) Original image 

 
(b) RL restoration (support size = 3) 

 
(c) RL restoration (support size = 5) 

 
(d) CWT-HOOI restoration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The original and restored images in the second experiment. 
 

In the second experiment, the orignal image was blurred 
due to defocusing as shown in Fig. 4(a). The blind RL 
restoration result in Fig. 4(b) and (c) did not show any 
improvement. The proposed CWT-HOOI result shown in Fig. 
4(d) presented some improvement. For instance, the desk in 
the background became much clearer. Here, the 1D CWT was 
appplied to the four directions as in Fig. 2, and the value of 
scaling factor a was in [0.25, 2.5]. 
 

 

V. CONCLUSION 
In this paper, a blind model-free single-frame image 

restoration method is proposed, which virtually requires no 
information about the blurring kernel: neither model nor size 
of the support. The method uses 1D CWT to generate a 
multichannel version of degraded image and is followed by 
orthogonality constrained tensor factorization based blind 
source separation (the HOOI algorithm) to achieve image 
deconvolution for restoration.  Better performance is 
demonstrated relative to the traditional blind RL method that, 
however, requires a priori information about the parametric 
model of the PSF. It is conjectured that the proposed method 
can be useful for the scenarios where no a priori information 
about the blurring process is available and the degradation is 
modest. 
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