Pregled bibliografske jedinice broj: 535690
Tensor Factorization and Continous Wavelet Transform for Model-free Single-Frame Blind Image Deconvolution
Tensor Factorization and Continous Wavelet Transform for Model-free Single-Frame Blind Image Deconvolution // 7th International Symposium on Image and Signal Processing and Analysis / Lončarić, Sven ; Ramponi, Gianni ; Seršić, Damir (ur.).
Zagreb: Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2011. str. 529-533 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 535690 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Tensor Factorization and Continous Wavelet Transform for Model-free Single-Frame Blind Image Deconvolution
Autori
Kopriva, Ivica ; Du, Qian
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
7th International Symposium on Image and Signal Processing and Analysis
/ Lončarić, Sven ; Ramponi, Gianni ; Seršić, Damir - Zagreb : Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu, 2011, 529-533
ISBN
978-953-184-159-7
Skup
7th International Symposium on Image and Signal Processing and Analysis
Mjesto i datum
Dubrovnik, Hrvatska, 04.09.2011. - 06.09.2011
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
blind deconvolution; tensor factorization
Sažetak
Model-free single-frame blind image deconvolution (BID) method is proposed by converting BID into blind source separation (BSS), whereas sources represent the original image and its spatial derivatives. Continuous wavelet transform (CWT) is used to generate multi-channel image necessary for BSS. As opposed to an approach based on the Gabor filter bank, this brings additional options in adaptability to the problem at hand: through the choice of wavelet function and variation of the scale of the CWT. BSS is performed through orthogonality constrained factorization of the 3D multichannel image tensor by means of the higher-order-orthogonal-iteration algorithm. The proposed method virtually requires no information about blurring kernel: neither model nor size of the support. The method is demonstrated on experimental gray scale images degraded by de-focusing and atmospheric turbulence. A comparable or better performance is demonstrated relative to blind Richardson-Lucy method that, however, requires a priori information about parametric model of the blur.
Izvorni jezik
Engleski
Znanstvena područja
Matematika, Računarstvo
POVEZANOST RADA
Projekti:
098-0982903-2558 - Analiza višespektralih podataka (Kopriva, Ivica, MZOS ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb
Profili:
Ivica Kopriva (autor)