

Abstract — Underwater exploration is experiencing an ever
increasing usage of both autonomous and remotely operated
robotic vehicles. Vehicles are typically equipped with several
sensors depending on the mission type being carried out.
Integration of all these systems together, as well as obtaining
data from them presents a significant challenge. This article
describes a software architecture which represents all entities
in the system as equivalent modules, while hiding their specifics
from the user. Each module in the system is fully defined only
by the data it produces and the commands it accepts. Modules
are coupled together using a communication interface which
again hides the underlying protocol from the user, and is based
solely on message exchange. This architecture allows quick
reconfiguration of the vehicle, easy integration of various
sensor systems and provides the application developers with a
higher level of abstraction.

I. INTRODUCTION

OFTWARE interfaces are a common way of improving
potential for code reuse, simplifying cooperation

between multiple programmers on the same project and
making code more readable. Classes used in object oriented
programming have the benefit of grouping data together
with the methods that utilize it. At the same time, classes
improve the security of the code because they can prevent
illegal operations on data. When designing classes that will
be used in the system, the public methods define how its
functionality will be exposed. For good modularity, the
public functions should all have the same level of
abstraction [1]. Class interchangeability is achieved using
interfaces. Interfaces specify the methods a class should
implement without providing any implementation details. A
class which implements an interface guarantees that it can be
used in a context where such an interface is required. The
class can implement more than one interface, and the
interface that is used depends on the context [2]. Code that
relies on interfaces instead of classes is more flexible
because it relies only on data that is passed to an operation
and received as its result. The improved modularity of the
code reduces the effort needed to integrate different pieces
of code and enables utilization of various programming
languages in the same project. The higher level of
abstraction allows developers to focus on solving problems
at a higher level without worrying about low level problems
such as pointers or protecting critical data.
 Quality of Experience (QoE) measures how satisfied a

user is while using a system. Unlike Quality of Service
(QoS), which measures the technical aspects of the system
such as network throughput, availability and speed, QoE
involves more psychological measurements. A typical QoE
measurement will involve statistics such as the number of
users that try the system out and continue to use it, time
needed to perform a particular task and the number of
mistakes the user makes before completing the task. A
system with a high QoS does not necessarily have a high
QoE, but QoS is a necessary prerequisite for QoE.
Usefulness and usability [3, 4] are additional requirements
for good QoE. Usefulness implies the potential of a resource
to provide useful data and/or services. Usability shows the
resource’s actual ability to provide it. The measures of
usefulness and usability are typically used in web design,
but most of the principles can be applied to
hardware/software architectures. In the context of
hardware/software architectures, QoE implies ease of
hardware deployment, reconfigurability and expandability.
Usefulness is the architecture’s capability to incorporate an
array of sensors and acquire data from them. Usability is the
flexibility of data presentation, capability for custom
processing and a measure of the effort required to
reconfigure the system.
 This article describes the requirements for improving the
QoE for integration of multiple sensors on underwater
vehicles and development of underwater vehicle control
systems.

II. PROBLEM STATEMENT

A typical underwater mission includes multiple sensors
installed on a single vehicle or multiple cooperative
vehicles. Multiple sensors allow the vehicle operators to
obtain a better quality of data as well as to perform multiple
tasks in one dive. Vehicles may be used in missions that
require different sets of sensors. Bottom mapping may
require additional sonars to be installed; monitoring marine
habitats may require additional cameras or chemical sensors.
Sensors installed on the vehicle are typically made by
different manufacturers and therefore need different
software packages for data acquisition. Before all sensor
datasets can be fused together, they need to be transformed
into a standard format so they can be processed together. In
case timekeeping systems on different sensors are out of
sync, special care needs to be taken in order to properly
synchronize different logs.

A modular approach to system integration in underwater robotics

Tomislav Lugarić, Đula Nađ and Zoran Vukić

University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia

S

Synchronizing different logs can be solved by developing
a central logging application, deployed either on a computer
installed onboard an autonomous vehicle or a computer
connected to the control panel of a remotely operated
vehicle. The central logging application can use its own
timekeeping system, eliminating the need for log
synchronization. By performing additional calculations and
conversions, data can immediately be standardized. The
disadvantage of this approach is apparent in case a piece of
equipment is installed on a vehicle for the first time. Before
it can be used with the vehicle, the logging application needs
to be expanded to accept data from the new sensor. This
makes transferring sensors between vehicles time
consuming and reduces the vehicle’s reconfigurability.

The goal of the system described in this article is to
improve the reconfigurability of the vehicle and raise the
quality of experience (QoE) of its operators without
imposing restrictions on the functionalities of the sensors.

III. SYSTEM ARCHITECTURE

The system described in this article is designed to be
modular, loosely coupled and message based. The primary
goal while designing the system is to shift the focus sensor
specifics to sensor data. Loose coupling is achieved because
each entity in the system is completely described by the data
it provides (variables) and the data it accepts (commands).
Modularity of the software is designed to closely resemble
the modularity of the entity’s hardware. By modular
software we mean that it is easily expandable with new
sensors, control panels or additional processing. Loose
coupling means that the system is robust because a failure in
one of the modules does not necessarily prevent other
modules from functioning properly. Since all
communication in the system is based on messages, and a
message can be read by several modules, it is easy to send
the same data to multiple modules at once.

An example system is shown in figure 1. There are three
basic types of modules in the system:

Figure 1: Architecture of system for vehicle system integration

driver modules (represented by solid black boxes),
supporting blocks (represented by dotted boxes) and user
interfaces (represented by dashed lines). All modules in the
system are connected by a communication medium. The
communication medium can be implemented using any
technology and is used as a logical bus. Communication
medium must implement operations specified by the
communication interface abstract class.

IV. COMMUNICATION MEDIUM AND INTERFACE

The communication interface is a purely abstract class,
meaning it has no implementations of any communication
operations. The communication medium represents the mean
through which the communication interfaces communicate
with each other. In case of a P2P communication system, the
medium will represent the network connecting all nodes
together, while the appropriate communication interfaces
will take care of routing messages from source to
destination(s). In case of a publish/subscribe system, the
communication medium will include a repository for
messages, while communication interfaces will handle
registration for incoming messages and publishing of
outgoing messages. The developer of the system does not
need to take care of the recipient of a message, and each
module can forget about a message as soon as it is passed to
the communication interface. The recipient is responsible for
receiving the message and handling it.

In the system, communication between communication
interfaces and the communication medium is carried out
using standardized messages which are best suited for the
medium in use. Mediums using textual communication
protocols may use XML or similar markup languages to pass
messages, while lower level protocols might use arrays of
bytes. Communication between modules and communication
interfaces is done using appropriate programming functions
specified in communication interface abstract class.

The communication interface can have two modes of
operation: active and passive. In case of a passive
communication interface, the module utilizing it must poll
the interface for incoming data when it is ready to process it
and pass outgoing data to the interface. In case the interface
is active, the module only needs to register event handling
functions for incoming and outgoing data. The active
interface will poll the module for outgoing data when ready
to transmit it and will pass incoming data to the module
when it is received. Data can be exchanged between the
communication interface and the module in three formats:
byte array, named datamap and XML text. When sending
data, the interface will accept any of the three formats.
When receiving data from the communication interface, the
developer of the module must specify which format the
module will accept. The developer has no control over the
actual format used to transmit messages since this format is
determined by the type of communication medium.

Figure 2: Usage of two communication mediums

In case two connection mediums must be used in the
system, a bridge between them should be deployed. Figure 2
shows an example of a system using two communication
mediums.

The first communication medium may represent a device
specific bus that is used on the underwater vehicle, and the
second one may represent a local area network connecting
the vehicle’s console with computers processing data.
Corresponding modules are connected to their respective
communication mediums in the same manner as in figure 1.
Additionally, an interconnection module is added that is
connected to both mediums. Since the data formats the two
communication interfaces provide is compatible, the
interconnection block only needs to forward data between
them. If additional data processing is needed anyway, it can
be implemented inside the interconnection block.

V. DRIVER MODULES

Driver modules are software abstractions of respective
pieces of hardware. Example of a driver module is shown in
figure 3.

Figure 3: Driver module

 Each driver performs marshalling of the data that is sent
from the device towards the communication interface and
unmarshalling of the data received from the communication
interface. Umarshalled data received from the
communication interface will include commands for turning
various features of the hardware on and off, i.e. thruster
power, fin settings and sensor adjustments. Data that is
being marshaled prior to sending to the communication
interface will include hardware status and raw data.

Driver modules convert device specific commands and
data to a standardized format. This has the benefit of
allowing devices made by various manufacturers to be easily
integrated and swapped. All device driver modules of the
same type must send a defined group of datasets for
maximum interchangeability. The module using the data
from a sensor can only assume that those datasets exist,
while additional datasets can be used only after verifying
they are present. Additional datasets may be sent if the
device provides additional data. For example, every attitude
sensor must send yaw, pitch and roll values. It may also send
temperature, drift, accelerations in x, y, and z directions. The
module that receives this data will rely on yaw, pitch and
roll data. The additional datasets may be included in
calculations the receiving module performs, but the
developer should check if they are provided. If they are not
provided, the developer can either make calculations without
them, or provide default values that do not impair
calculation to be used when no real data is available.

VI. SUPPORTING MODULES

Supporting modules contain calculations that perform
conversions of data, filtering, corrections or sensor fusion.
These additional processing operations are kept separate
from sensors in order to make the system more modular. If
the processing needs data from several sensors, integrating
data processing with them would mean coupling the two
sensors firmly together, impairing the modularity of the
system. In cases where a module needs data from only one
sensor, it is still beneficial to separate sensor driver and
processing for greater code flexibility. With the processing
code in a separate supporting module, the developer has the
choice of using the supporting module with any sensor, to
combine it with other processing modules or to not use it at
all, reading only raw sensor data.

Figure 4: System with support modules

Similarly to driver modules, supporting modules perform
unmarshalling of the data that is to be processed and
marshalling of the processed data. Unmarshalled data is
converted into the format suitable for processing and is
either processed by the code directly in the module or is
passed to an external application such as MATLAB.

Figure 4 shows an example of a system with supporting
modules and different possible data flows. In this example,
the driver module for a compass installed on a robotic
vehicle provides heading data. Since the compass is prone to
magnetic deviation, and is affected by vehicle motion, two
modules that correct those errors have been added into the
system. The raw heading data is marshaled, sent into the
system, and can be used by listening for the corresponding
message, indicated by the solid arrow. The motion
correction module listens for the message and performs
processing by stabilizing the reading depending on the
movement of the vehicle. For simplicity, messages
providing data about vehicle motion are not shown. The
message containing the corrected data is indicated by the
dashed arrow. The deviation correction module listens for
the message providing smoothed data from motion
correction module and corrects the heading using deviation
data, obtained from a unit such as GPS (message not
shown). Corrected data is indicated by the dotted arrow.
Messages containing raw data and motion smoothed data are
not consumed because two modules read them. All three
messages are available to any modules that are eventually
added to the system. The developer or the operator may
choose to use raw data and filter it in some new module, to
use partially or fully filtered data.

VII. USER INTERFACE MODULES

User interface modules are designed to be deployed on
computers which are used to operate or monitor the system.
Typically the user interface modules will have a graphical
user interface (GUI) to display sensor data and vehicle status
and accept inputs from the user. Interfaces may also have
support for other input methods such as joysticks or
keyboards and logging functionality. Unmarshalled data
received from the communication interface is analyzed and
converted to the appropriate format to be read by the GUI. A
diagram of the user interface module is shown in figure 5.

Communication
interface

UI module
XML

parser

GUI

C
om

m
an

ds

Commands

S
ettings

S
ta

tu
s

X
M

L

Figure 5: UI module

User interfaces have an XML document parser which is
used to load user settings for them. Inside the XML
document, the user can specify variables to display,
variables to be read from the GUI or from human interface
devices (e.g. joystick) and the indicators used to display
variables. The XML document can be written manually or
automatically generated using a tool for designing user
interfaces. When designing the GUI, user selects one of the
available GUI elements and specifies its parameters and the
variable or variables the GUI element is bound to. If a
variable is defined as output, the value of the variable is sent
to the GUI element which displays it. If a variable is defined
as input, its value is read from the corresponding GUI
element. Input of values can be done from keyboard and
joystick as well. Joystick and keyboard support can be
handled by the same UI module that handles the GUI
functionality, or can be handled by a separate module.

Multiple user interface modules may be attached to the
system and configured for each user individually. This way,
the pilot of the vehicle can configure his display to show
navigation data such as maps, obstacles, speed and heading,
while other experts observing the same mission can
configure their displays to display data relevant to them.

VIII. EXAMPLE IMPLEMENTATION

An example implementation of a modular control system
was developed at the Faculty of Electrical Engineering and
Computer Science in the Laboratory for Underwater
Systems and Technologies. The system is designed for
controlling an Iver2 AUV over WLAN while on surface. It
can be used to pilot the AUV into position prior to starting a
mission, return it from the last mission waypoint to the dock
or ship to be retrieved or to monitor Iver’s vital statistics

while it is performing a surface mission. Two
communication mediums are in use: the Mission Oriented
Operating Suite (MOOS) [5], and a serial interface.

The driver module for the Iver2 AUV sends messages
about vehicle’s power system (battery), attitude and position
(compass, GPS, IRS, depth) and about the current state of
the mission in progress, if any. The commands that can be
sent to the driver include thruster/fin settings for direct
control, course, speed and depth for a semi-automatic
control and load/start/stop mission for fully automatic
control. Iver2 has two computers – frontseat and backseat.
The frontseat computer controls the AUV, while the
backseat computer is used for additional applications.

The MOOS system is a publish-subscribe message
exchange environment. It uses a central server on which all
clients publish their messages. The clients also subscribe for
the messages they wish to receive, and the server forwards
the requested messages to them. The MOOS server is
deployed on the backseat computer onboard Iver2. Any
computers that wish to access data from the system must
connect to Iver’s wireless network. Figure 6 shows the
physical structure of the system.

In the system, the physical communication medium
between backseat and shoreside PCs is the MOOS running
over Ethernet. Serial interface is used as a communication
medium between backseat and frontseat PCs. The backseat
PC runs Iver’s driver module, a support module and an
interconnection module. The vehicle driver module converts
data between standard messages that are used in the system
and NMEA messages used by Iver’s control software on the
frontseat computer. The support module logs data about the
AUV and stores it on the disk of the backseat PC. The
interconnection module connects the MOOS communication
medium and the serial communication medium. Since the
connection between backseat and shoreside is broken upon
diving, it is beneficial to deploy all logging and critical
processing modules on the backseat computer and leave
only the control modules on shoreside PCs. In this example
implementation, only the user interface module is running

 Figure 6: Iver 2 control system – hardware architecture

MOOS communication

Shoreside

Serial communication

CI Serial to
MOOS

interface

CI

Iver control
software

CI

Iver driver

GUI +
Joystick

CI

Logger

CI

CI

Figure 7: Iver 2 control system - logical architecture

on the shoreside PC. Figure 7 shows the software
architecture of the system.

The entire system depicted on figure 7 is physically
located on Iver2, except for the part marked by the dotted
line. The MOOS communication medium hides the physical
separation of backseat and shoreside PCs, making the
system easier to expand. The only weak point of the system
is the fact that the MOOS server is located on the Iver2 and
is unavailable to the shoreside PCs during underwater
missions.

In the future, it is planned to use a similar system with
other vehicles owned by the Laboratory. Driver modules
should be developed for all ROVs, sonars, acoustic modems
and sensors available, enabling the deployment of a
versatile, expandable and highly flexible robust system.

IX. CONCLUSION

This article has reviewed a control architecture proposal
that offers a polymorphic view of control systems. Devices
and protocols can be exchanged without direct intervention
into the system kernel. This eases software development and
users can focus on developing modules rather than whole
systems. With this improvement of the developer’s QoE,
more time can be invested in testing and research as less is
needed for software support.

Passing data encoded in XML is often encountered in web
architectures but less so in low level control systems. This is
usually because of efficiency concerns. However, if soft
real-time operation is enough we find that the additional
overhead is negligible compared to benefits. Wide range
support exists for XML, therefore, we can easily interface
modules written in different programming languages. This
increases code reuse.

Increased modularity of the system as well as abstraction
of all entities makes reconfiguration an easy and quick
process. This in turn improves the end-user QoE because it
is easy to quickly remove or add sensors to the system, use a
different vehicle or to reconfigure the operating console for
a different type of mission.

Future work will continue the development and
optimization of the architecture. Focus will be on creating an
architecture that would provide support for development of

software solutions from low level control systems up to
mission control and monitoring systems. The
reconfigurability of the system will be facilitated by usage of
XML-based configuration files that will define the
connections of the entities in the system and allow for quick
ad-hoc reconfiguration.

ACKNOWLEDGMENT

The work was carried out in the framework of a
Coordination and Support Action type of project supported
by European Commission under the Seventh Framework
Programme "CURE – Developing Croatian Underwater
Robotics Research Potential" SP-4 Capacities (call FP7–
REGPOT–2008–1) under Grant Agreement Number:
229553.

REFERENCES
[1] McConnel, S, Code Complete, Second Edition, Microsoft Press, 2004.
[2] Mayo, J; C# Ekspert; Miš, 2002. Zagreb
[3] Srbljić, S., Škvorc, D., Skrobo, D., Widget – Oriented Consumer

Programming, Autimatika 50(2009), 3-4, str 252-264

[4] Škvorc, D., Programiranje prilagođeno potrošaču, PhD thesis, ,
University of Zagreb Faculty of Electrical Engineering and Computing

[5] MOOS: Main ; Oxford Mobile Robotics Group;
http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php; 18. 1.
2011

