Pregled bibliografske jedinice broj: 525023
Implementation Framework for Artificial Neural Networks on FPGA
Implementation Framework for Artificial Neural Networks on FPGA // Proceedings Vol. I. MEET&GVS 34rd International Convention MIPRO 2011 / Biljanović, Petar ; Skala, Karolj (ur.).
Zagreb: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2011. str. 274-278 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 525023 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Implementation Framework for Artificial Neural Networks on FPGA
Autori
Škoda, Peter ; Lipić, Tomislav ; Srp, Ágoston ; Medved Rogina, Branka ; Skala, Karolj ; Vajda, Ferenc
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings Vol. I. MEET&GVS 34rd International Convention MIPRO 2011
/ Biljanović, Petar ; Skala, Karolj - Zagreb : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2011, 274-278
Skup
34th International Convention on Information and Communication Technology, Electronics and Microelectronics
Mjesto i datum
Opatija, Hrvatska, 21.05.2011. - 25.05.2011
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
field programmable gate array ; neural network
Sažetak
In an Artificial Neural Network (ANN) a large number of highly interconnected simple nonlinear processing units work in parallel to solve a specific problem. Parallelism, modularity and dynamic adaptation are three characteristics typically associated with ANNs. Field Programmable Gate Array (FPGA) based reconfigurable computing architectures are well suited to implement ANNs as one can exploit concurrency and rapidly reconfigure to adapt the weights and topologies of an ANN. ANNs are suitable for and widely used in various real-life applications. A large portion of these applications are realized as embedded computer systems. With continuous advancements in VLSI technology FPGAs have become more powerful and power efficient, enabling the FPGA implementation of ANNs in embedded systems. This paper proposes an FPGA ANN framework which facilitates implementation in embedded systems. A case study of an ANN implementation in an embedded fall detection system is presented to demonstrate the advantages of the proposed framework.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Projekti:
098-0982560-2566 - Mjerenje i karakterizacija podataka iz stvarnog svijeta (Medved-Rogina, Branka, MZOS ) ( CroRIS)
098-0982562-2567 - Metode znanstvene vizualizacije (Skala, Karolj, MZOS ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb