Pregled bibliografske jedinice broj: 524022
On the size of sets whose elements have perfect power n-shifted products
On the size of sets whose elements have perfect power n-shifted products // Publicationes mathematicae, 79 (2011), 3-4; 325-339 doi:10.5486/PMD.2011.5155 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 524022 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the size of sets whose elements have perfect power n-shifted products
Autori
Berczes, Attila ; Dujella, Andrej ; Hajdu, Lajos ; Luca, Florian
Izvornik
Publicationes mathematicae (0033-3883) 79
(2011), 3-4;
325-339
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
shifted product ; perfect power ; abc-conjecture ; Diophantine m-tuple
Sažetak
We show that the size of sets A having the property that with some non-zero integer n, a_1a_2 + n is a perfect power for any distinct a_1, a_2 in A, cannot be bounded by an absolute constant. We give a much more precise statement as well, showing that such a set A can be relatively large. We further prove that under the abc- conjecture a bound for the size of A depending on n can already be given. Extending a result of Bugeaud and Dujella, we also derive an explicit upper bound for the size of A when the shifted products a_1a_2 + n are k-th powers with some fixed k >= 2. The latter result plays an important role in some of our proofs, too.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
MZOS-037-0372781-2821 - Diofantske jednadžbe i eliptičke krivulje (Dujella, Andrej, MZOS ) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Profili:
Andrej Dujella
(autor)
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi publi.math.unideb.hu www.math.klte.huCitiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- MathSciNet
- Zentrallblatt für Mathematik/Mathematical Abstracts