Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 512177

Feature extraction for cancer prediction by tensor decomposition of 1D protein expression levels


Kopriva, Ivica; Jukić, Ante; Cichocki, Andrzej
Feature extraction for cancer prediction by tensor decomposition of 1D protein expression levels // Proceedings of the 2nd IASTED International Conference on Computational Bioscience / Montana, Giovanni (ur.).
Cambridge, Ujedinjeno Kraljevstvo, 2011. str. 277-283 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 512177 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Feature extraction for cancer prediction by tensor decomposition of 1D protein expression levels

Autori
Kopriva, Ivica ; Jukić, Ante ; Cichocki, Andrzej

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 2nd IASTED International Conference on Computational Bioscience / Montana, Giovanni - , 2011, 277-283

ISBN
978-0-88986-889-2

Skup
IASTED Conference on Computational Bioscience CompBio2011

Mjesto i datum
Cambridge, Ujedinjeno Kraljevstvo, 11.07.2011. - 13.07.2011

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
cancer prediction; mass spectrometry; feature extraction; tensor decomposition; pattern recognition

Sažetak
Tensor decomposition approach to feature extraction from one-dimensional data samples is presented. One-dimensional data samples are transformed into matrices of appropriate dimensions that are further concatenated into a third order tensor that is factorized according to the Tucker-2 model by means of the higher-order- orthogonal iteration (HOOI) algorithm. Derived method is validated on publicly available and well known datasets comprised of low-resolution mass spectra of cancerous and non-cancerous samples related to ovarian and prostate cancers. The method respectively achieved, in 200 independent two-fold cross-validations, average sensitivity of 96.8% (sd 2.9%) and 99.6% (sd 1.2%) and average specificity of 95.4% (sd 3.5%) and 98.7% (sd 2.9%). Due to the widespread significance of mass spectrometry for monitoring protein expression levels and cancer prediction it is conjectured that presented feature extraction scheme can be of practical importance.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
098-0982903-2558 - Analiza višespektralih podataka (Kopriva, Ivica, MZOS ) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Ante Jukić (autor)

Avatar Url Ivica Kopriva (autor)


Citiraj ovu publikaciju:

Kopriva, Ivica; Jukić, Ante; Cichocki, Andrzej
Feature extraction for cancer prediction by tensor decomposition of 1D protein expression levels // Proceedings of the 2nd IASTED International Conference on Computational Bioscience / Montana, Giovanni (ur.).
Cambridge, Ujedinjeno Kraljevstvo, 2011. str. 277-283 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Kopriva, I., Jukić, A. & Cichocki, A. (2011) Feature extraction for cancer prediction by tensor decomposition of 1D protein expression levels. U: Montana, G. (ur.)Proceedings of the 2nd IASTED International Conference on Computational Bioscience.
@article{article, author = {Kopriva, Ivica and Juki\'{c}, Ante and Cichocki, Andrzej}, editor = {Montana, G.}, year = {2011}, pages = {277-283}, keywords = {cancer prediction, mass spectrometry, feature extraction, tensor decomposition, pattern recognition}, isbn = {978-0-88986-889-2}, title = {Feature extraction for cancer prediction by tensor decomposition of 1D protein expression levels}, keyword = {cancer prediction, mass spectrometry, feature extraction, tensor decomposition, pattern recognition}, publisherplace = {Cambridge, Ujedinjeno Kraljevstvo} }
@article{article, author = {Kopriva, Ivica and Juki\'{c}, Ante and Cichocki, Andrzej}, editor = {Montana, G.}, year = {2011}, pages = {277-283}, keywords = {cancer prediction, mass spectrometry, feature extraction, tensor decomposition, pattern recognition}, isbn = {978-0-88986-889-2}, title = {Feature extraction for cancer prediction by tensor decomposition of 1D protein expression levels}, keyword = {cancer prediction, mass spectrometry, feature extraction, tensor decomposition, pattern recognition}, publisherplace = {Cambridge, Ujedinjeno Kraljevstvo} }




Contrast
Increase Font
Decrease Font
Dyslexic Font