Pregled bibliografske jedinice broj: 512177
Feature extraction for cancer prediction by tensor decomposition of 1D protein expression levels
Feature extraction for cancer prediction by tensor decomposition of 1D protein expression levels // Proceedings of the 2nd IASTED International Conference on Computational Bioscience / Montana, Giovanni (ur.).
Cambridge, Ujedinjeno Kraljevstvo, 2011. str. 277-283 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 512177 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Feature extraction for cancer prediction by tensor decomposition of 1D protein expression levels
Autori
Kopriva, Ivica ; Jukić, Ante ; Cichocki, Andrzej
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 2nd IASTED International Conference on Computational Bioscience
/ Montana, Giovanni - , 2011, 277-283
ISBN
978-0-88986-889-2
Skup
IASTED Conference on Computational Bioscience CompBio2011
Mjesto i datum
Cambridge, Ujedinjeno Kraljevstvo, 11.07.2011. - 13.07.2011
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
cancer prediction; mass spectrometry; feature extraction; tensor decomposition; pattern recognition
Sažetak
Tensor decomposition approach to feature extraction from one-dimensional data samples is presented. One-dimensional data samples are transformed into matrices of appropriate dimensions that are further concatenated into a third order tensor that is factorized according to the Tucker-2 model by means of the higher-order- orthogonal iteration (HOOI) algorithm. Derived method is validated on publicly available and well known datasets comprised of low-resolution mass spectra of cancerous and non-cancerous samples related to ovarian and prostate cancers. The method respectively achieved, in 200 independent two-fold cross-validations, average sensitivity of 96.8% (sd 2.9%) and 99.6% (sd 1.2%) and average specificity of 95.4% (sd 3.5%) and 98.7% (sd 2.9%). Due to the widespread significance of mass spectrometry for monitoring protein expression levels and cancer prediction it is conjectured that presented feature extraction scheme can be of practical importance.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
098-0982903-2558 - Analiza višespektralih podataka (Kopriva, Ivica, MZOS ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb