Pregled bibliografske jedinice broj: 504980
The meaning of computer search in the studying some classes of IM-quasigroups
The meaning of computer search in the studying some classes of IM-quasigroups // Applied mathematics and scientific computing
Zagreb, 2005. str. 43-43 (predavanje, međunarodna recenzija, sažetak, znanstveni)
CROSBI ID: 504980 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
The meaning of computer search in the studying some classes of IM-quasigroups
Autori
Volenec, Vladimir ; Kolar-Begović, Zdenka
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
Applied mathematics and scientific computing
/ - Zagreb, 2005, 43-43
Skup
Applied mathematics and scientific computing
Mjesto i datum
Brijuni, Croatia, 19.06.2005. - 24.06.2005
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
GS-quasigroup
Sažetak
A computer search allowing the discovery some special values for the complex number $q \in C \setminus \{;0, 1\};$ such that the quasigroup $C(q)$ is characterized by means of simple algebraic identities, which can be seen in the presentation of V. Kr\v{;c};adinac and V. Volenec. In this way we can find out simple formulae for defining the quaternary relation Par in such a quasigroup, where Par$(a, b, c, d)$ means that $a, b, c, d$ are the vertices of a parallelogram in this cyclical order. We are going to report on the IM--quasigroup $C(q)$ for $q=\frac{;1};{;2};(1+\sqrt{;5};)$ the so called GS--quasigroup which has nice geometric representation which justifies the research of this quasigroup. In general GS--quasigroup the relation Par can be defined by means of several equivalent formulae which can be discovered in $C(q)$ for $q=\frac{;1};{;2};(1+\sqrt{;5};)$. We will choose such a formula for Par which allows the definition of the addition in general GS--quasigroup by the equivalency $c=a+b \Leftrightarrow Par(0, a, c, b)$ where $0$ is the chosen element in GS--quasigroup. The theorem about characterization of GS--quasigroup will be proved by means of the above mentioned formula.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
037013
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Sveučilište u Osijeku, Odjel za matematiku