
1 INTRODUCTION 
Blind deconvolution (BD) aims to reconstruct the 

original image from an observation degraded by spatially 
invariant blurring process and noise. Neglecting the noise 
term, the process is modeled as a convolution of a point 
spread function (PSF) h(s,t) with an original source 
image f(x,y) as: 
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where M denotes the PSF support size. If the PSF is 
known a number of algorithms are available to 
reconstruct original image f(x,y) [1,2]. However, it is not 
always possible to measure or obtain information about a 
PSF, which is why BD algorithms are important [1]. In 
order to estimate the blurring kernel h(s,t) a support size 

has to be either given or estimated [1,2]. In general, 
estimation of the size of the blurring kernels is a non-
trivial issue. Even in the most recent contributions it is 
assumed that estimation of the optimal value of the order 
of the blurring kernel is a serious issue [3]. Also, quite 
often a priori knowledge about the nature of the blurring 
process is assumed to be available [2] that is not always 
possible in practice. Multivariate data analysis methods, 
such as independent component analysis (ICA) [4], might 
be used to solve BD problem as an instantaneous BSS 
problem, where unknown blurring process would be 
absorbed into an unknown mixing or basis matrix. Thus, 
neither size of support nor origin of the blurring kernel 
would be required by the ICA approach to BD. However, 
multi-frame image required by the ICA LMM is not 
always available. Even if it is, it requires the blurring 
kernel to be non-stationary, which is true for blurring 
caused by atmospheric turbulence [5, 5a], but it is not 
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true for out-of-focus blur for example. Thus, an approach 
to single frame multichannel BD that requires minimum 
of a priori information about blurring process and 
original image would be of great interest. One such 
approach was proposed in [6]. It was based on a bank of 
2-D Gabor filters [7] used due to their ability to realize 
multichannel filtering. A serious weakness of this 
approach to BD is that statistical independence 
assumption, upon which the ICA algorithms are built, 
among the hidden variables in the resulting LMM is not 
fulfilled. The reason is the special structure of the LMM 
that is obtained using Taylor series expansion of the 
source image, where the hidden variables are the source 
image and its spatial derivatives. That was realized in [8]. 
Therefore, non-negative matrix factorization (NMF) [9] 
has been employed in [10,11] to perform unsupervised 
decomposition of the LMM, hence BD, due to the fact 
that NMF algorithms are not sensitive to the statistical 
dependence among the hidden variables of the LMM. 
One potential problem with the NMF algorithms is that 
data non-negativity during formation of the LMM is not 
preserved. Fixing this problem influences sparseness of 
the LMM and consequently quality of the results. For this 
reason an approach to BD has been formulated in [12] 
combining ICA and multiscale subband decomposition, 
used to enhance statistical independence among the 
hidden variables of the LMM. The unknown mixing 
matrix is invariant with respect to the multiscale 
preprocessing transform and is estimated by applying 
ICA algorithms to the subband with statistically least 
dependent components. Hidden variables are recovered 
by applying a truncated SVD-based pseudoinverse of the 
learnt basis matrix to the data in original domain. The 
multiscale subband decomposition approach to enhance 
statistical independence is based on the assumption that 
wideband source signals are dependent, but there exist 
some narrow subbands where they are independent [13]. 
The main critique of the multiscale subband 
decomposition approach to BD introduced in [12] is its 
computational complexity if fine resolution in the 
subband decomposition process is necessary. This is due 
to the fact that 2D wavelet packets are used to implement 
the multiscale subband decomposition scheme. As an 
alternative to multiscale subband decomposition we 
propose in this paper an innovations representation of the 
LMM to enhance statistical independence among the 
hidden variables. Innovations present several nice 
properties important for the BD problem: (i) innovations 
are always more statistically independent and more non-
Gaussian than original processes [14]; (ii) they have 
computationally efficient implementation in a form of the 
prediction-error filter estimated by means of the Levinson 
recursion [15]; (iii) they are data-adaptable. This means 
that the shape of the magnitude frequency response of the 

prediction-error filter is adapted to the specific image, 
following profile of the statistical dependence among the 
hidden variables in the frequency domain. The rest of the 
paper is organized as follows. In section 2 we introduce 
the LMM of the degraded image and discuss its 
properties. Section 3 presents brief discussion related to 
the statistical properties of the source image in order to be 
amenable for BD by the proposed approach. Innovations 
representation is also described in section 3. Section 4 
presents results of comparative performance analysis for 
simulated de-focused image, while section 5 presents 
results of the comparative performance analysis for 
experimental de-focused image. Conclusions are given in 
section 6.  

2 INSTANTANEOUS LINEAR MIXTURE MODEL 
 
The key insight in [6] was that original image f(x-s, y-t) 

can be approximated by Taylor-series expansion around 
f(x,y) giving: 
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This enables to re-write (1) as: 
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and fx,  fy,  fxx,  fyy and fxy are first- and second-order 
spatial derivatives in x and y directions respectively. The 
quality of the approximations (2) and (3) depends on the 
number of terms in the Taylor-series expansion of the 
source image f(x-s, y-t). However, g(x,y) in (3) can also 
be obtained as an inverse Fourier transform of the 
expression ( ) ( ), ,u v u vH Fω ω ω ω  where ( ),u vH ω ω  and 

( ),u vF ω ω respectively represent Fourier transforms of 

the degradation kernel and the source image, 2u uω π= , 
2v vω π=  and u and v are spatial frequencies in x and y 

directions. Assuming an image size of P×Q pixels, 



( ),u vH ω ω  is obtained as: 
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Evidently, number of terms in the expansions (4) and 
(5) depends on the strength of the degradation kernel M, 
but also on the property of the source image: size of its 
support Ωx=Ωy=Ω in the frequency domain. Thus, 
degradations with a strength that is small relative to 
coherence length of the image, i.e. M<<(2π/Ω), will 
demand small number of terms in the approximation (3) 
and vice versa.  

When Gabor filters are applied to blurred image, a new 
set of observed images is obtained as: 
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and where '
lh (s,t) represents convolution of the 

appropriate l-th Gabor filter with h(s,t). This leads to 

multi-channel representation:  
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that can be recognized as an LMM to which ICA 
algorithms can be applied to extract the source image f. In 
the simulated and experimental performance evaluation, 
presented in sections 4 and 5, we have used order of the 
LMM model set to L+1=9, i.e. we have used the real 
parts of the 2D Gabor filter bank with two spatial 
frequencies and four spatial orientations (L=2×4). Our 
choice is a reasonable compromise between performance 
and complexity. For additional information relating to 2D 
Gabor filter banks, we refer interested readers to 
[6,7,10,11,12]. We point out that the use of Gabor filters 
to obtain the LMM (7) is not crucial for the success of the 
innovations approach to BD that is to be introduced. 
Some other multi-channel representations, such as 
wavelet packets, might be used as well. The optimal 
transform that converts a single sensor to an equivalent of 
the multi-sensor representation is, at the moment, an open 
theoretical issue. The lexicographical (vector) 
representation is assumed in (7) for original image f and 
observed images gl. In this work we have used a Peano-
Hilbert space-filling curve for 2D→1D mapping, due to 
its property of preserving neighborhood relationships and 
being amenable to fast implementation [16]. As can be 
seen no a priori information about blurring kernel is 
assumed so far. There is however a critical condition for 
the source images f, fx, fy, fxx, fyy, fxy etc., to fulfill in 
order for ICA algorithms to work accurately: in addition 
to be non-Gaussian, images must be statistically 
independent as well. The last statement is in general not 
true as already observed in [7] and further elaborated in 
[10-12].  



3 STATISTICAL DEPENDENCE AND INNOVATIONS  
 
We briefly reproduce here results and conditions from 

[17][12] necessary for the stochastic differentiability of 
the random source signal f. Their importance is in 
establishing conditions for the existence of the Taylor-
series expansion, Eq.(2), and the LMM, Eq.(7). First we 
present two important results that relate (non-)stationarity 
and linear signal representation. If signal f is stationary it 
can be represented by the linear space-invariant 
generative model: 
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where ε(p) is an independent and identically 
distributed (i.i.d.) driving signal. If signal f is non-
stationary, the linear signal model becomes space-variant: 
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We comment here that f is a non-stationary signal 
because its statistics vary locally; i.e., 

1 2( ( )) ( ( ))pdf f p pdf f p≠ . This means that for the 
typical image the first-order stationarity requirement does 
not hold [17]. We also comment that image f is a process 
with a colored statistics; i.e. it is not an i.i.d. process. This 
is a consequence of the known phenomenon that 
neighboring pixels are usually correlated. Consequently 
its autocorrelation function ( )fρ τ  differs from the delta 
function. We are therefore concerned with proving the 
existence of the Taylor-series expansion, Eq.(2), and 
LMM, Eq.(7), for a non-stationary and non-i.i.d. process. 
Although, the conditions required for stochastic 
differentiability are derived for stationary signals only 
[17], we can use them with the linear generative model of 
the non-stationary signal (9). Hence we define derivatives 
of the non-stationary signal f(p) provided that space 
variant filter b(p,r) is stationary with respect to the 
independent variable p:    
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Thus, Taylor-series expansion (2) and the LMM (7) do 

exist. However, we can not draw a conclusion regarding 
statistical independence among f, fx, fy, etc., as in the case 
of a stationary signal, [17][12]. Thus, it is justified to use 
some of the methods derived to enhance statistical 
independence between the hidden variables in the LMM 
(7). In this paper we propose to use innovations 

representation of the LMM (7), due to its property of 
being more non-Gaussian and more statistically 
independent than original processes. Because these 
conditions are of essential importance for the success of 
the ICA algorithms, the unknown basis matrix A in the 
LMM (7) will be learned more accurately if ICA 
algorithms are applied to the innovations representation 
of G rather than to G itself. Once the basis matrix is 
estimated, we employ its pseudo-inverse to reconstruct 
the hidden variables in the LMM (7).  

Innovations representation has been proposed in [14] 
as a preprocessing transform in order to increase the 
accuracy of the instantaneous ICA algorithms. The same 
approach has also been used later in [18] as the 
preprocessing transform for linear and post-nonlinear 
instantaneous ICA problems, when statistically 
independent source signals have strong temporal 
autocorrelations. In this later case innovations are 
implemented by linear preprocessing filter that 
temporally decorrelates signals which increases their non-
Gaussianity. In our approach to BD we use both 
properties of innovations: increased statistical 
independence and increased non-Gaussianity, in order to 
transform the LMM (7) and improve accuracy of the 
estimation of the basis matrix A. Innovations 
representation of the hidden variables contained in F is 
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where the second term in Eq.(11) represents conditional 
expectation. If both sides of (11) are multiplied by the 
unknown basis matrix A we obtain 
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Eq.(12) implies that innovations preserve the basis 
matrix A. In practice, the expectation is replaced by an 
autoregressive (AR) model of finite order yielding 
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The coefficients bk of the AR polynomial are 
coefficients of the prediction-error filter efficiently 
estimated by the Levinson algorithm [15]. Thus 
innovations G  are obtained by applying prediction-error 
filter on each gl 
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where K represents order of the AR model and b0=1. We 
identify L+1 filters for the LMM model (7) and obtain 
the prediction-error filter in (14) as an average of the 
component-wise linear predictors, [18]. Higher order 
terms in the Taylor series expansion (2), which are 
caused by strong degradation, may heavily influence 
quality of the deconvolution result by the proposed 
algorithm. This is due to the fact that source image and its 
spatial derivatives act as source signals in the 
instantaneous LMM (7) and they are statistically 
dependent. At the moment it is an open issue to what 
extent linear preprocessing transforms, such as 
innovations proposed here or wavelet packets proposed in 
[12] can enhance statistical independence among this 
special class of hidden variables i.e. source image and its 
higher-order spatial derivatives? Therefore, we make an 
assertion that efficiency of the proposed approach to BD 
might be limited in cases of strong degradations that 
consequently induce presence of higher-order spatial 
derivatives of the source image in the LMM (7).  

4 SIMULATION RESULTS ON DE-FOCUSED IMAGE 
 
Table 1 and Figure 1 show the results of the 

comparative performance analysis between derived 
algorithm, wavelet-packets (WP) based algorithm [12] 

and blind Richardson-Lucy (BRL) algorithm [19], 
implemented by a MATLAB© command deconvblind. 
We have simulated de-focus blur by convolution of the 
image with a circular kernel with radius R=3 and R=5 
pixels. The size of the original bacteria-AT3 image, taken 
from the MATLAB© image processing toolbox is 
480x640 pixels. The JADE-ICA algorithm [20] was 
applied to innovations representation G  to learn the basis 
matrix A. In the implementation of the innovations, the 
order of the prediction-error filter (14) was set to K=10 
(the choice is not critical). In order to quantify 
performance of the image restoration algorithms we have 
calculated signal-to-interference ratio (SIR) in dB 
according to: 
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where f(x,y) and ˆ( , )f x y  denote reference and restored 

image respectively. When SIR was calculated for blurred 
image, ˆ( , )f x y in (15) had to be replaced with g(x,y). The 
SIR performance is summarized in Table 1. 

 

Table 1. Rows: SIR performance, Eq. (15), for: blurred image; image restored by innovations-based algorithm; 
image restored by WP algorithm [12]; image restored by BRL algorithm after 10 iterations with R=3; image 
restored by BRL algorithm after 10 iterations with R=5. Columns: Type of algorithm; size of degradation kernel 
R=3 pixels; size of degradation kernel R=5 pixels. 

 Blurred 
image 

Innovations WP [12] BRL, 
R=3 

BRL, 
R=5 

SIR [dB], 
R=3 pixels 

17.07 21.46 17.80 22.61 15.81 

SIR [dB], 
R=5 pixels 

13.68 14.71 13.20 14.42 17.93 

 
Several conclusions can be drawn from these results. 

The performance of the proposed image restoration 
algorithm as well as the WP algorithm decreases as 
strength of degradation process is increased. The same 
conclusion holds for the BRL algorithm. However, 
performance of the BRL algorithm decreases rapidly 
when the size of the degradation kernel is not estimated 
correctly. This is a demonstration of the known fact that 
BD algorithms are in general very sensitive to either 
over- or underestimation of the size of degradation kernel 
[2]. In addition to that, if the size of degradation kernel is 

not known, the BRL algorithm has to be run several times 
before the best result can be selected. There are no such 
problems with the proposed method. Selected results for 
this simulated scenario are shown in Figure 1. We would 
like to comment on the shape of the magnitude frequency 
response of the prediction-error filter used in (14) to 
implement innovations representation. The shape of the 
response reveals the known empirical fact that statistical 
dependence is concentrated in the low-frequency part of 
the spectrum, which is typical for the real-world images 
[13]. 



 

Fig. 1. Top left: original bacteria-AT3 image; top right: defocused image with radius of circular blurring kernel R=3 
pixels; middle left: image restored by the proposed algorithm; middle right: magnitude frequency response of the 
prediction-error filter; bottom left: image restored by the BRL algorithm after 10 iterations and assumed radius of the 
blurring kernel R=3 pixels; bottom right: similar as left but with the R=5 pixels. 

 

5 EXPERIMENTAL RESULTS ON DEFOCUSED 
IMAGE 

 
Figure 2 shows de-focused image obtained by digital 

camera in manually de-focused mode, the image restored 
by the innovations approach, the magnitude frequency 
response of the learned prediction-error filter used to 
implement the innovations transform and the image 

restored by the BRL algorithm. The order of the 
prediction-error filter, Eq.(14), used to implement 
innovations transform was set to K=10. The JADE 
algorithm [20] was applied to the innovations of the 
LMM to learn the basis matrix. Similarly to the case with 
the simulated de-focusing blur, shape of the magnitude 
frequency response of the prediction-error filter obeys 
high-pass filtering behavior. Consequently, we have 
achieved good agreement between simulation and 



experiment. We want to stress again that shape of the 
frequency response is optimally adapted to the specific 
experimental image. The BRL result was obtained after 
10 iterations with the radius of the circular blurring kernel 
equal to R=3 pixels. We want to point out that the BRL 
algorithm had to be run several times for different values 

of the size of the blurring kernel R. Then the image with 
the best quality had to be chosen. There are no such 
problems with the innovations-based algorithm. Hence 
we expect it can be useful in many real-world 
applications [21]. 

 

Fig. 2. Top left: de-focused experimental image; top right: image restored by the proposed algorithm; bottom left: 
magnitude frequency response of estimated prediction-error filter, bottom right: the best result obtained by BRL 
algorithm with R=3 pixels. 

 

6 CONCLUSION 
 
An approach to single frame multi-channel blind image 

deconvolution has been introduced requiring no 
information about the size and origin of the blurring or 
convolution kernel. The approach is characterized by 
converting blind deconvolution problem into an 
instantaneous blind source separation problem of 
statistically dependent sources, where hidden variables 
are source image and its higher-order spatial derivatives. 
In relation to the competing algorithms introduced 
recently, we have used innovations representation of the 
resulting linear mixture model in order to estimate the 
unknown basis matrix. We have demonstrated consistent 
performance by the introduced algorithm on simulated 

and experimental de-focused image. The shape of the 
magnitude frequency response of the estimated 
prediction-error filter revealed known empirical fact that 
statistical dependence is concentrated in the low-
frequency part of the spectrum. Quantitative performance 
expressed in term of the signal-to-interference ratio 
confirmed that the proposed algorithm successfully 
competes with the state-of-the-art blind image 
deconvolution algorithms, such as blind Richardson-Lucy 
algorithm, requesting no information about the size and 
origin of degradation kernel. The open questions that 
ought to be answered are: optimality of the transform 
used to convert single-sensor to multi-sensor problem and 
optimality of the transform used to enhance statistical 
independence among the special class of hidden variables 
that consists of the source image and its higher-order 



spatial derivatives. 

ACKNOWLEDGMENTS 
 
The authors gratefully acknowledge help of Professor 

Andrzej Cichocki for providing code that calculates the 
SIR performance measure. Part of this work was 
supported through grant 098-0982903-2558 funded by 
the Ministry of Science, Education and Sport, Republic of 
Croatia.  

 

REFERENCES  
 

[1] M.R. Banham, A.K. Katsaggelos, Digital Image Restoration, IEEE 
Signal Processing Magazine 14 (1997) 24-41. 
[2] D. Kundur, D. Hatzinakos, Blind Image Deconvolution, IEEE 
Signal Processing Magazine 13 (1996) 43-64. 
[3] K. E. Jang, J. C. Ye, Single channel blind image deconvolution 
from radially symmetric blur kernels, Optics Express 15 (2007) 3791-
3803. 
[4] A. Hyvärinen, J. Karhunen, E. Oja, Independent Component 
Analysis, John Wiley & Sons, Inc, New York, 2001.  
[5] I. Kopriva, Q. Du, H. Szu, W. Wasylkiwskyj, Independent 
Component Analysis Approach to Image Sharpening in the Presence of 
Atmospheric Turbulence, Optics Communications 233 (2004) 7-14. 
[5a] Q. Du, I. Kopriva, Dependent Component Analysis for Blind 
Restoration of Images Degraded by Turbulent Atmosphere, 
Neurocomputing 72 (2009), 10-12; 2682-2692 
[6] S. Umeyama, Blind Deconvolution of Blurred Images by Use of 
ICA, Electronics Communication in Japan, Part 3 84 (2001), 1-9. 
[7] J. G. Daugman, Complete Discrete 2-D Gabor Transforms by 
Neural Networks for Image Analysis and Compression, IEEE Tr. on 
Acoustics, Speech and Signal. Processing 36 (1988) 1169-1179. 
[8] M. Numata, and N. Hamada, Image Restoration of Multichannel 
Blurred Images by Independent Component Analysis, in Proceedings of 
2004 RISP International Workshop on Nonlinear Circuit and Signal 
Processing (NCSP’04, 2004), pp.197-200. 
[9] P. O. Hoyer, Non-negative matrix factorization with sparseness 
constraints, Journal of Machine Learning Research 5 (2004) 1457-1469. 
[10] I. Kopriva, Single Frame Multichannel Blind Deconvolution by 
Non-negative Matrix Factorization with Sparseness Constraint, Optics 
Letters 30 (2005) 3135-3137. 
[11] I. Kopriva, D.J. Garrood, V. Borjanović, Single Frame Blind 
Image Deconvolution by Non-negative Sparse Matrix Factorization, 
Optics Communications 266 (2006) 456-464. 
[12] I. Kopriva, Approach to Blind Image Deconvolution by 
Multiscale Subband Decomposition and Independent Component 
Analysis, Journal Optical Society of America A 24 (2007) 973-983. 
[13] A. Cichocki, P. Georgiev, 'Blind source separation algorithms 
with matrix constraints, IEICE Transactions on Fundamentals of 
Electronics, Computer and Computer Science E86-A (2003) 522-531. 
[14] A. Hyvärinen, Independent component analysis for time-
dependent stochastic processes, in: Proceedings of the International 
Conference on Artificial Neural Networks (ICANN’98, 1998), pp. 541-
546. 
[15] S. J. Orfanidis, Optimum Signal Processing – An Introduction, 2nd 
ed., MacMillan Publishing Comp., New York, 1988. 
[16] W. M. Lam, J. M. Shapiro, A Class of Fast Algorithms for the 

Peano-Hilbert Space Filling Curve, in: Proceedings of the IEEE 
International Conference Image Processing, Institute of Electrical and 
Electronics Engineers, New York, 1994, pp. 638-641. 
[17] M. B. Priestley, Spectral Analysis and Time Series, Academic 
Press, 1981. 
[18] J. Karvanen, T. Tanaka, Temporal Decorrelation as Preprocessing 
for Linear and Post-nonlinear ICA, Lecture Notes in Computer Science 
3195 (2004) 774-781.  
[19] D. A. Fish, A.M. Brinicombe, E.R. Pike and J.G. Walker, Blind 
deconvolution by means of the Richardson-Lucy algorithm, Journal 
Optical Society of America 12 (1995) 58-65. 
[20] J. F. Cardoso, A. Soulomniac, Blind beamforming for non-
Gaussian signals, Proceedings. IEE F 140 (1993) 362-370. 
[21] G. K. Klančar, M. Brezak, D. Matko, I. Petrović, Mobile Robots 
Tracking Using Computer Vision, Automatika 46 (2006) 155-163. 
 


