ࡱ> }|q` EbjbjqPqP 4::Y%  777878< |9:":::;;;$hx٥u )@;;)@)@٥ ::NGGG)@ : :G)@GGc :9 p)|7BwFסd0cD T;V<G=>;;;٥٥IG^;;;)@)@)@)@ (2$ 2  Pero Vidan, Sc. D.; e-mail: HYPERLINK "mailto:pvidan@pfst.hr" pvidan@pfst.hr; Faculty for Maritime Studies; Zrinsko Frankopanska 38; Split; Croatia Prof. Josip Kasum, Sc. D.; e-mail: jkasum@pfst.hr; Croatian Hydrographic Institute, Zrinsko Frankopanska 141; Split; Croatia Marijan Zuji, Graduate Engineer; e-mail: HYPERLINK "mailto:pvidan@pfst.hr" mzujic@pfst.hr; Faculty for Maritime Studies; Zrinsko Frankopanska 38; Split; Croatia METEOROLOGICAL NAVIGATION AND ECDIS ABSTRACT In maritime traffic, a route is one or more known tracks along which navigation takes place or there is intention to sail. Meteorological factors are important if the route exceeds. Meteorological navigation is the selection of a navigational route in view of meteorological factors and control of vessel during heavy weather condition and safe navigation aimed at the protection of human lives, vessel and cargo during heavy weather. In this paper, the authors propose a model of grouping and evaluating estimates of meteorological factors when planning meteorological navigation. It is advised to upgrade the programme Electronic Chart Display and Information System ECDIS with the aim to allow for computer planning of meteorological navigation. KEY WORDS: Planning of navigation, Meteorology, Optimal route, ECDIS 1. INTRODUCTION In maritime traffic, a route is one or more known tracks along which navigation takes place or there is intention to navigate. A route of known length is determined by planning of the voyage. It includes all major navigating factors, like: safety, time of departure and arrival to the port, etc. The route is selected by the navigational officer and approved by the captain of the ship. In maritime traffic time is an important factor in vessel efficiency. The objective to save time and money is often contrary to professional rules about a safe voyage. When selecting the route it is necessary to take into account that the shortest route is not necessarily the safest one. Meteorological factors are increasingly important if the route exceeds 1500 M [1]. Meteorological navigation is the selection of navigational route in view of meteorological factors and control of the vessel during heavy weather condition and safe navigation aimed at the protection of human lives, ship and cargo in heavy weather. In this paper, the authors propose a model of grouping and evaluating estimates of meteorological factors when planning meteorological navigation. It is advised to upgrade the programme Electronic Chart Display and Information System ECDIS with the aim to allow for computer planning of meteorological navigation [2]. It is expected that such application will facilitate the selection of the route in meteorological navigation for the navigation officer. 2. METEOROLOGICAL FACTORS Meteorological factors can be assessed on the basis of meteorological data. They are found in Maritime Safety Information MSI [3]. Maritime safety information relating to meteorology at sea are collected through measurements and surveys obtained by: 1) Meteorological satellites, Land meteorological stations, and Vessel meteorological stations [4]. Recordings of metrological satellites showing air masses and surveillance of other factors in the atmosphere are considered as basic measurements. The results of the measurements are forwarded to land stations and others. Land meteorological stations are located at various land positions. They measure atmospheric metrological data from the land and collect satellite data and vessel meteorological data for the purpose of producing weather forecast. Vessel meteorological stations are parts of Vessel Observing System VOS. Ships and offshore objects are equipped with adequate technical and technological equipment. By means of Voluntary Observing Ship maximum accurate data about an area are gathered. Gathered, analysed and adapted meteorological data are distributed in the form of maritime safety information through: Satellite, and Terrestrial communication systems. International Maritime Satellite INMARSAT is used for distributing maritime safety information with meteorological data via satellite in maritime traffic [5]. Terrestrial communication systems contain standardised procedures for distributing maritime safety information with meteorological data using VHF, MF and HF communication network. PLANNING THE VOYAGE, METEOROLOGICAL NAVIGATION AND ROUTES Planning of a voyage refers to all activities related to the creation of the voyage plan. Those activities include gathering and analysing available data. The data are gathered from nautical charts, publications, communication devices, navigational equipment and data about the vessel. In meteorological navigation, the most convenient route is selected taking into consideration meteorological factors and control of the vessel in heavy weather. The route is planned before the voyage and adjusted during the voyage. Transatlantic navigation can be: Orthodrome navigation, Loxodrome navigation, and Combined navigation. In orthodrome navigation the vessel often enters the high latitudes zones. In terms of safety of navigation those areas are considered as meteorologically and oceanologically unfavourable. There vessels sail close to border areas of glaciers. The sea is rough throughout the year and the winds are strong and cold. When sailing along the loxodrome the frequent change of the course can be avoided, but the length of the route is increased. Greater distance does not necessarily mean a longer voyage. In combined navigation, loxodrome and orthodrome navigations are combined. High latitudes of northern hemisphere and low latitudes of southern hemisphere are avoided. From the aspect of meteorological and oceanological factors the selection of the route is also affected by the current situation of the vessel and prediction of future factors. The planned route is checked for a particular season in pilot charts which contain air and sea currents, limits of sea ice etc. Safety aspects are determined by studying sea charts, navigational publications and maritime safety information. In order to make decisions in compliance to valid conditions the following factors are analysed: External factors, and Vessel factors. External factors are: Current geographic position, Position of the destination, Distance to the destination, The length of the voyage, Presence of ice, Tides, Water level (when sailing along rivers), State of the sea, Visibility, Temperature, Weather forecast, Sea and water currents, Safety of navigation, and Others. The current geographic position is the reached position, i.e. the position from which it is necessary to plan the meteorological navigation. It is expressed by geographic coordinates ( and ). The position of the destination is the geographic position of the destination described by the coordinates ( and ). The distance to the destination is determined by the remaining part of the route measured from the current geographic position of the vessel to the geographic position of the destination expressed in nautical miles (M). The distance to the destination is an inconsistent variable. It is changed according to the divergence of the real route from the planned route. The duration of the voyage is the time spent in the voyage from the beginning of the voyage to the end of the voyage. It depends on the speed of the vessel, the length of the navigational route and meteorological factors during the voyage. In the case of meteorological navigation, it is the time from the current geographical position of the vessel to the geographical position of the destination. It is expressed in days (D), hours (h) and minutes (min.). The presence of ice is a dangerous occurrence at sea, especially in the areas where it is not expected. Glaciers may travel at the influence of currents and reach out of ice zones. In some areas the ice may restrict or even completely obstruct the navigation. Travelling of glaciers and extension of ice zones has been described in publications and special charts. The presence of ice on the deck may jeopardise the vessels stability. Probability of occurrence of ice is taken on the basis of statistical data of observance of occurrence during several years and the existing currents. Tides are a factor that may restrict the navigation in some areas because of decrease of depth. The unit for lowest and highest values (high and low tide) is expressed in metres (m) and is calculated by means of Tide tables. Tides are important for the draft of the vessel. In river navigation water level denotes the current level of water of a river, lake or channel. It is expressed in metres (m). It depends on sea tides, precipitations, wind etc. The data about water level are obtained by means of communication devices. Water level is important for the draft of the vessel. The state of the sea is described by the direction, size and frequency of the waves. The direction of the waves is considered from the aspect of which side of the world they are. The size of the waves is measured from the hollow to the crest of the wave. The frequency of the waves is measured by the number of waves in a unit length. The state of the sea is described in the Baufort, Douglas or Petersen scale for the state of the sea. The waves may significantly prolong or shorten the time of the voyage. The data about the state of the sea are received through communication devices. The estimation about the current state is done by observing the sea [6]. Visibility is determined by the distance of visibility of distant objects in the horizon. The measure for visibility is determined by the distance of the range of sight. The distance of the range of sight is expressed in kilometres (km). It is important for the safety of navigation especially in the areas of higher intensity of traffic or the need for manoeuvrings (narrow straits, channels, rivers, lakes etc.). The data about visibility are obtained on the basis of weather forecast via communication devices. The current visibility data are obtained by observing the horizon and on the basis of evaluation of meteorological factors (air and water temperature, pressure, wind, etc.) [6]. Information on visibility is important for planning the optimal meteorological route (OMR) for the areas with higher traffic intensity. The air temperature is the level of the air heat. The water temperature is the level of the water heath. It is measured by mercury thermometer and the measuring unit is Celsius grade (C). Maritime Safety Information MSI relating to temperature are obtained through measurements on the vessel or through communication devices (INMARSAT, NAVTEX, VHF etc.)[7]. The temperature of the air and sea and atmospheric pressure do not have significant effects to navigation, but they are considered in weather forecasting. Hence, temperature has to be taken into account when planning the optimal meteorological route. Weather forecast refers to forecasting meteorological phenomena (wind, waves, temperature and precipitations). They are obtained by observing motions of pressure, clouds and wind and by reading synoptic charts. Weather forecasts are available through communication devices (INMARSAT, NAVTEX, Weather faximile etc.) while synoptic charts are available by Weather facsimile. Weather forecast is produced for a six-hour unit [7]. Sea and water streams are currents which occur because of motion of water masses. They are held important in planning the optimal meteorological route as they may significantly affect the speed of the vessel. They are measured in knots. The data about sea currents may be found in nautical charts and publications. The state of the wind is determined by its direction and force. The direction of the wind is the direction from which it blows. The force of the wind is determined by its speed and is measured in knots (M/h) and metres per second (m/s). The state of the wind is given in Beaufort wind scale. Precipitations (weather) are described in the scale, relating to the cloudiness and precipitations. Precipitations may restrict visibility and cause interference in the ships radar. Such phenomena are inconvenient for the areas of high density of traffic and affect the safety of navigation [7]. The safety of navigation is a set of regulations, rules, standards and customs which regulate navigation in order to reduce the hazard of losses of human lives and property. The factors that are related to the safety of navigation are affected by: navigational route recommended in marine charts or nautical manuals, areas of separate navigation, customary navigational routes recommended by the institutions for meteorological control of vessels, position and size of the area prohibited for navigation, position and area of navigation permitted by the International Convention on Load Lines, and available navigational systems in the navigational area. Factors of the vessel are: characteristic of the vessel, autonomy of the vessels navigation, safety of the vessel, requirements of the ship operator, freighter and insurer, specific cargo, position of special areas and particularly sensitive areas, and others. Characteristic of the vessel are determined by technical characteristics of the ship. Technical characteristics describe the vessels dimensions, power and speed. The vessels dimensions are determined by its length, width, height and draft. The power of the vessel is determined by its purpose (passenger, cargo, tug, icebreaker, fishing boat etc.). The speed of the vessel is determined by the power of the propulsion and by the form of the vessel. The autonomy of the vessel is the time of the stay of the vessel at sea with current supplies. Current supplies refer to the reserves of fuel, oil, potable water, food, spare parts and other supplies. The autonomy of the vessel is an inconstant variable and is taken on the basis of current available data about the supplies in relation to the current and expected consumption. The safety equipment of the vessel is the level of equipment of the vessel for the safe navigation along a particular area. Safety navigation refers to all navigational and communication equipment, search and rescue equipment etc. Limitations of the vessel are determined by the shipping registry in conformity with international rules and standards. Restrictions are specified for the distance from the coast, for particular seas, areas, etc. [8] [9] [10]. The requirements of the ship operator, freighter and insurer are their special requirements relating to the use of a particular navigational route. Such requirements are related to business operations of the company and the ship, and should not influence the selection of the route from safety and meteorological aspects. Specific characteristic of cargo refer to its properties. Some kinds of cargo require quick delivery to the destination, hence the shortest navigational routes have to be used (channels, passages, etc.). Such cargo is usually highly perishable goods, such as cooled cargo and the like. For dangerous cargo (inflammables, radioactive, hazardous for pollution) legal regulations for particular routes and areas are to be observed. In that way the special care areas are to be protected: closed seas, environmentally protected areas etc. [8]. For the purpose of further development of the model it is proposed to group the factors and evaluate them according to the tables below. (Tables 1 and 2) Table 1 External factors in meteorological navigation MARK: AEXTERNAL FACTORS IN METEOROLOGICAL NAVIGATIONINFLUENTIAL FACTOR MARKSIGNIFICANCEMEASURING UNIT OR SOURCEa1Current geographic position , a2Destination  , a3Distance to destinationMa4Length of the voyageD, h, min.a5Ice Weather forecast or meteorological measurementsa6Sea tidesMarine charts and navigational publicationsa7Water level when navigating along riversma8State of the seaWeather forecast or meteorological measurementsa9Visibility Weather forecast or meteorological measurementsa10Temperature oCa11Weather forecastSafetyNet / NAVTEX servicea12Sea and water currentsm/sa13Safety of navigationMarine charts and navigational publicationsanOther Other  Table 2 Factors of the vessel in meteorological navigation MARK: BFACTORS OF THE VESSEL IN METEOROLOGICAL NAVIGATIONINFLUENTIAL FACTOR MARKSIGNIFICANCEMEASURING UNIT OR SOURCEb1Properties of the vesselData from the registerb2Autonomy of the vessels navigationD, h, min.b3Safety of the vesselRegisterb4Requirements of the ship operator, freighter and insurerContract b5Specific cargoBill of ladingb6Position of special areas and particularly sensitive areasMarine charts and navigational publicationsbnOthers Others  It is evident that a relatively high number of factors important in planning meteorological navigation and determining OMR are measured in different measures or differently described. In further development of the model of grouping and evaluating of assessment measures of meteorological factors in planning meteorological navigation the following has to be determined: measures in optimal decision-making, and correspondence to ECDIS system. 4. METEOROLOGICAL ROUTE AND ECDIS Besides other reasons for the use of ECDIS system in navigation, it is also used in maritime meteorology, as it is its integral sub-system. For instance, the use of ECDIS allows access to oceanologic, bathymetric, meteorological and other data (Weather Reports) [2]. The possibility of planning the meteorological navigational route has not been observed. In order to make optimal decisions in planning OMR, it is proposed that each influential factor (a1 an, b1 bn) has two values: favourable value, and unfavourable value for determining OMR. The favourable value is the value of the factor which allows safe passage of the vessel when navigating in OMR. It is proposed to be marked by one (1). The unfavourable value would be the value of the factor which does not allow for a safe passage of the vessel when navigating in OMR. It is proposed to be marked by zero (0) Therefore, if in the same time:  EMBED Equation.3  (1) and  EMBED Equation.3  (2) the route in navigation will be considered as safe. Such approach allows for programmed decision-making about the change of the route or the change of the navigation in the route. When designing the programme solution of meteorological navigation it is proposed to use the initial decision-making algorithm in selecting OMR in ECDIS system. (Figure 1) In order to complete the programmed solution it is necessary to develop other necessary decision-making algorithms at lower level of generalisation.  EMBED Visio.Drawing.4  Figure 1 Initial decision-making algorithm in selecting OMR It may be concluded that in determining OMR various managing decisions are made at certain time intervals. It may therefore be assumed that determining OMR is a multi-stage managing process, and the final number of stages may be given: analysis of the group A data stage (p1), analysis of the group B data stage (p2), and proposal of OMR stage (p3). The following functional model presents the stage of the analysis of the group A data (p1) which are affected by the states (0 or 1) of the values a1, a2,...an (Table 1): p1=f(a1,a2,...an) (3) The following functional model presents the stage of the analysis of the group B data (p2) which are affected by the states (0 or 1) of the values b1, b2,...bn (Table 2): p2=f(b1,b2,...bn) (4) The following functional model presents the stage of the proposal of OMR (p3) which is affected by the output values of the decision-making algorithm (Iv) (Figure 1): p3=f(Iv) (5) Therefore, the determination of OMR may be presented as the function (R) which changes and depends on the stages as shown in the model: R=f( p1,p2,p3) (6) CONCLUSION Meteorological navigation is the selection of navigational route in view of meteorological factors and control of the vessel in heavy weather and safe navigation aimed at the protection of human lives, ship and cargo in heavy weather. Optimal meteorological route may be the route determined by applying human potential skills and competences and all available technologies in decision-making and implementation of management processes, which achieve the highest accuracy. In order to increase the available technologies further researches and development are proposed, for instance, development of decision-making algorithms at lower level of generalisation as the complete programme solution. It is expected that the implementation of the developed model of planning of OMR using ECDIS will substantially contribute to the increase of level of safety of navigation in areas where it is necessary. REFERENCES: [1] N. Bowditch: The American Practical Navigator, National Imagery and Mapping , Maryland, USA, 2002 [2] UKHO/MO ISB Project, Digital Charting and Weather Information, 2001., available at: www.isb.gov.uk/hmt.isb.application2/BIDDERS/ HYPERLINK "http://www.isb.gov.uk/hmt.isb.application.2/BIDDERS/Final%20Evaluations/2%2041%20Electronic%20delivery%20of%20Weather%20forecasts%20on%20Admirality%20Chart%20feasibility%20study%20report.pdf" Digital Charting and Weather Information, accessed 7 January 2008 [3] J., Kasum, Updating Sea Charts and Navigational Publications, The Journal of Navigation, The Royal Institute for Navigation, Vol. 56, Issue 03, London, 2003, Cambridge University Press, United Kingdom [4] F. X. Martinez De Oses, Graphics Theory to Optimise the Navigation, 2004 available at: Jurnalmeteonavigation, ?@AOPQ   4 B յp\&h!h!5CJOJQJ\^JaJ.h!h!5CJOJQJ\^JaJmH sH %h!5CJOJQJ^JaJmH sH  h> h3z hfT\ h3z\h3z\mH sH h> h3z0J>*B*\phjh> h3zU\jh> h3zU\h> h3z\h*\mH sH h> h3z\mH sH   < > @ $d`a$gd3zgd3zdgd3z $`a$gd3z$a$gd3zgd3z$a$gd!$a$gd!$a$gd!DB D : < > @ ӸӄoZD/(h3zh3zCJ OJQJ^JaJ mH sH +h!h!5CJOJQJ^JaJmH sH (h!5CJOJQJ\^JaJmH sH (h3z5CJOJQJ\^JaJmH sH .h!h!5CJOJQJ\^JaJmH sH 6h!h!0J5>*B*CJOJQJ\^JaJph5jh!h!5CJOJQJU\^JaJ&h!h!5CJOJQJ\^JaJ/jh!h!5CJOJQJU\^JaJ g @w;xcXC(h3zh3zCJOJQJ^JaJmH sH h3zh3zmH sH (hu5CJOJQJ\^JaJmH sH h5bmH sH h3zhu6mH sH h!mH sH h.mH sH h3zhumH sH h3zhu5mH sH h3z6]mH sH h,h3z56]mH sH h,hu56]mH sH "h,hu5CJ]aJmH sH "h3zCJOJQJ^JaJmH sH   %&տտլs^SH@H@h.mH sH h3zhumH sH h3zh3zmH sH (h3zhuCJOJQJ^JaJmH sH (h3zh3zCJOJQJ^JaJmH sH h3zhu5mH sH .h3zhu5CJOJQJ\^JaJmH sH %h!5CJOJQJ^JaJmH sH +h3zh3z5CJOJQJ^JaJmH sH +h3zhu5CJOJQJ^JaJmH sH (h3zhuCJOJQJ^JaJmH sH %&\ CilK22dgd3z $ & Fa$gd3z $h^ha$gd3z$a$gd3z $`a$gd3z$a$gd3zgd3z$ & Fda$gd3z TWXY[bCbdefghm_~ۯujbjTjuh.h.0J\mH sH h.mH sH h.h.mH sH h.humH sH h3zh3zCJaJmH sH h3zhu5CJaJmH sH h3zh3z5CJaJmH sH h3zmH sH h3zhu0J5\mH sH h.mH sH h3zhu6mH sH h3zhumH sH h3zh.mH sH h3zh.0J\mH sH 2 {~567qr02N%P%Z%\%8&<&F&H&L&ɽ맛뒆vgXXh3zhuB*mH phsH h3zh3zCJaJmH sH h3zhu5CJaJmH sH h3zh3z5mH sH hu5mH sH h3zhu]mH sH h3zhu6]mH sH h.mH sH h3zhu6mH sH h3zh3zmH sH humH sH h3zhuCJaJmH sH h3zhumH sH h*6mH sH "567qr2 "" $ & Fa$gd3zh^hgd3z & F"gd3z$a$gd3z $`a$gd3z $h^ha$gd3z $ & Fa$gd3z""#""""""""#6#G#N#w#########b%N&( & F7$8$H$gd3z $ & Fa$gd3z $ & Fa$gd3z $h`ha$gd3zL&N&'(((<*=*G*H*W*Z*]*^*,]-^-~--7.8..n00111n2p2/4244464748494:444y5~555 6彥zzoh3zh(mH sH h(mH sH h(h(mH sH h3zhu5CJaJmH sH h.mH sH h*CJaJmH sH h3zhu6mH sH h3zhuCJaJmH sH h3zhu6]mH sH h.6]mH sH h3zhumH sH h3zhuB*mH phsH +(^*,-.114&78:\<U===>V>>>> ?)? $ & Fa$gd3z$ & F7$8$H$a$gd3z $`a$gd3z$a$gd3zdgd3z $h`ha$gd3z 6&6)6*6+68888_8`8a8b8888888888:::::V<Y<Z<[<DDDDDDDDDEǻǰ{peeh(h(mH sH h5bhumH sH h3zh(6mH sH h(6mH sH h3zh(mH sH h*]mH sH h*h*]mH sH h*6]mH sH h3zhu]mH sH h3zhu6]mH sH h3zh*mH sH h3zhumH sH h(mH sH h3zhu6mH sH ')?O?e??????A7CEEFaHHH4I5I=Id$& #$/Ifb$gd.$a$gd3z$a$gd3zdgd3z $h`ha$gd3z$h7$8$H$^ha$gd3z$ & F7$8$H$a$gd3z $ & Fa$gd3zEEEWH[H\H_H`HaHHHHHHHHIIIIII3I4I5I=I>IlIIữzq\L\Lh.hu5CJaJmH sH (h.huCJOJQJ^JaJmH sH hu5mH sH h!5mH sH h!h3z5mH sH h!h!5mH sH h!hu5mH sH humH sH h3zCJaJmH sH h3zhuCJaJmH sH h3zh(mH sH h3zhu6mH sH h3zhumH sH h3zh(6mH sH h(mH sH =I>IlIud$& #$/Ifb$gd.rkd~$$Ifl,"" t 6 0644 lae4lImIIIIsss$$& #$/Ifa$b$gd.tkd$$Ifl:,"" t 6 0644 lae4IIII JfOOO$$& #$/Ifa$b$gd.kd$$IflF ,"   t 6 06    44 lae4IIIJJ.J:J>J@JrJtJzJ|JJJ4K6KKKLLHLILLLLLLLLLLL4M5MEMFMHMMMMM񪟓|lh.hu5CJaJmH sH h3zh!mH sH h!hu5mH sH h!h!5mH sH h3zhumH sH h.mH sH y(h.huCJH*aJmH sH h5bCJaJmH sH "h.hu5CJ\aJmH sH h.huCJH*aJmH sH h.huCJaJmH sH ) JJJ.J:JfOO;$& #$/Ifb$gd.$$& #$/Ifa$b$gd.kdH$$IflF ,"   t 6 06    44 lae4:J $$IflF ,"   t 6 06    44 lae42M3M6M=MDMfOOO$$& #$/Ifa$b$gd.kd $$IflF ,"   t 6 06    44 lae4DMEMGMHMMMMf^^VVJ $$Ifa$gd3z$a$gd3z$a$gd3zkd $$IflF ,"   t 6 06    44 lae4MMM $$Ifa$gd3zkkd$ $$IfTl,"" t0644 laTMMMMM~r $$Ifa$gd3z $Ifgd3z d$Ifgd3zkkd $$IfTl,"" t0644 laTMMMNNN5N6NhNiNNNNNNN^O_OqOOO"Q(Q.Q0Q1Q2Q5Q6QNQTQ˼tgWgWh!h!5CJaJmH sH h!5CJaJmH sH h3zh!mH sH humH sH h3zhu]mH sH h3zhu6]mH sH h3zhumH sH h.huCJH*aJmH sH h.huCJaJmH sH h.hu5CJaJmH sH h.huCJ\aJmH sH (h.huCJOJQJ^JaJmH sH MNNN3Nmaaa $$Ifa$gd3zkd$ $$IfTlF ,"   t06    44 laT3N4N7N[NfNmaaa $$Ifa$gd3zkd $$IfTlF ,"   t06    44 laTfNgNjNNNmaaa $$Ifa$gd3zkdD$$IfTlF ,"   t06    44 laTNNNNNmaaa $$Ifa$gd3zkd$$IfTlF ,"   t06    44 laTNNNNNmaaa $$Ifa$gd3zkdd$$IfTlF ,"   t06    44 laTNNN0O\Omaaa $$Ifa$gd3zkd$$IfTlF ,"   t06    44 laT\O]O`OhOpOmaaa $$Ifa$gd3zkd$$IfTlF ,"   t06    44 laTpOqOrO+PPQ0Q1QmeYYNNB $^a$gd3z $ & Fa$gd3z $`a$gd3z$a$gd3zkd$$IfTlF ,"   t06    44 laT1Q2QUQVQbRR@SVS~SSTTTT U$UfUUUVVgd3z$a$gd3z $`a$gd3z$a$gd3z $ & Fa$gd3z $h`ha$gd3zh^hgd! $^a$gd3zTQUQVQ{QQQRJRKRZR[R_RRRSSSS#S$S'S(S,S-SyS|STTTTTTTTTTTTTTUU$U˿ٳ٫˿ٳٳٳٳٳَ|kٳ!jh3zhuEHUmH sH #j*\K h3zhuUVmH sH jh3zhuUmH sH h3zhu6H*mH sH h5bmH sH h3zhu6mH sH h3zhu]mH sH h3zhu6]mH sH h3zhumH sH h3zh!mH sH h!hu5CJaJmH sH *$U%U8U9U:U;UbUeUVVVVVV]WcWdW|W}W~WWWWWWX娜|ug\|PAPh!hu56]mH sH h!hu5mH sH jh3zhuUjTh.h.0J5>*B*CJOJQJ\^JaJmH phsH .h.h.5CJOJQJ\^JaJmH sH 7jh.h.5CJOJQJU\^JaJmH sH 2huh.0J5CJOJQJ\^JaJmH sH ,hu0J5CJOJQJ\^JaJmH sH 2h.h.0J5CJOJQJ\^JaJmH sH huOJQJ^JmH sH  h.h.OJQJ^JmH sH bbbbbbbb_c`cccdcec{c|c}c~cccccccccccŹͥő}qh}qaqTRUh3zhu0JmH sH  h3zhuhu6mH sH h3zhu6mH sH huhumH sH hu5mH sH huhu5mH sH h.mH sH h3zhumH sH hu]mH sH huh.]mH sH humH sH h3zh.mH sH huh.5mH sH huhu0J5\mH sH hu0J\mH sH https:/../bitstream/2117/555/1/Optimizacin%20de%20navegacin%20mediante%20teora%20de%20Grafos.pdf, accessed 17 September 2007 [5] J., Kasum, Radioservice for seaman, Croatian Hydrographic Institute, Split, Croatia, 2007 [6] W.,J., Kotsch, R., Henderson,Heavy Weather Guide, Naval Institute Press, Maryland, USA 1984 [7] International Hydrografic Organisation (IHO), 2007, IHO web-site. Available at:  HYPERLINK "http://www.iho.org" www.iho.org, accessed 21 September 2007 [8] International Maritime Organisation (IMO), 2007, IMO web-site. Available at:  HYPERLINK "http://www.imo.org" www.imo.org, accessed 1 February 2008 [9] R. Frost: Principles of Search Theory, Soza&Company, Ltd, 2002 [10] SAR Seamanship Reference Manual,Coast Guard Canada, Ottawa, 2000     PAGE  PAGE 1  ƻƣևևλsgsg^Rh(hu]mH sH h(5mH sH h(hu5mH sH h(h(5mH sH h(mH sH hfTmH sH huhumH sH hu]mH sH huhu]mH sH huh(5mH sH h3zh.mH sH humH sH h.mH sH h3zhumH sH h3zhu0JmH sH !h3zhu0JB*mH phsH ?IJKNOP^~ $%BCcdepqŶŤ㋂Ŷpah(h(CJaJmH sH #jh3zh(UmH sH hu6mH sH h3zh(6mH sH h3zh(0JmH sH #j!h3zh(UmH sH jh3zh(UmH sH h3zh(mH sH h(h(mH sH humH sH h(mH sH h3zhumH sH h(]mH sH %!"$%'(*+456ABCh`hgdfT &`#$gdfT$a$gduhdh^h`gdu $h^ha$gd3z$0^`0a$gdu "#%&()+,ʾync[W[W[W[WMjhfT0JUh$|jh$|Uh3zhumH sH hBh(mH sH humH sH h3zh(mH sH h(mH sH h(h(mH sH h`h(CJaJmH sH h`h(5CJaJmH sH h`h(5CJaJhuCJaJmH sH h3zh(CJaJmH sH h(h(CJaJmH sH h(CJaJmH sH ,23467=>?@ACDEh3zhumH sH h$|h0JmHnHuhfTjhfT0JU hfT0J CDE $h^ha$gd3z21h:p!/ =!"#$% DyK pvidan@pfst.hryK ,mailto:pvidan@pfst.hrDyK pvidan@pfst.hryK ,mailto:pvidan@pfst.hr$$If!vh5"#v":V l t 6 065"e4$$If!vh5"#v":V l: t 6 065"e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4$$If!vh5 5 5 #v :V l t 6 065 e4~$$If!vh5"#v":V l t065"T~$$If!vh5"#v":V l t065"T$$If!vh5 5 5 #v :V l t065 T$$If!vh5 5 5 #v :V l t065 T$$If!vh5 5 5 #v :V l t065 T$$If!vh5 5 5 #v :V l t065 T$$If!vh5 5 5 #v :V l t065 T$$If!vh5 5 5 #v :V l t065 T$$If!vh5 5 5 #v :V l t065 T$$If!vh5 5 5 #v :V l t065 TDd \    !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrtuvwxyz{~Root Entry Fp+| Data sWordDocument4ObjectPool p)|p+|_1270242346Fp)|p)|Ole CompObjfObjInfo  !"#$%&'()*+,-./02 FMicrosoft Equation 3.0 DS Equation Equation.39q|Y a 1 ,a 2 ,...a n =n i=1n "Equation Native _1270242428 Fp)|p)|Ole CompObj f FMicrosoft Equation 3.0 DS Equation Equation.39q|i b 1 ,b 2 ,...b n =n i=1n " FVISIO 4 DrawingVISIO 4.0 ShObjInfo Equation Native  _1271086164Fp)|p)|Ole CompObjiObjInfoVisioDocumentWVisioInformation"apesVisio.Drawing.49q Oh+'08P\htAdministratorOh+'0 (Visio (TM) Drawing WRsEV;d !fffMMM333vq0vT d Arial)-": -3Times New Roman5T?? Y@-1++J/T  hTJbOSS0{Gz?@CPjV]uVbUUO OS? T666 NP U    UvPaC G#G#G#G#G#G#xG &#O`$$!N=4!>7i>}p'0U2?E! 67gjP>603206&0B!4?6@27Tg2k=\- g2 VT @9ܯ6L^pu )5,2?Op??ZX F&m0#P@w?l_?VCG MO_N9{OOOOOo2qG`?FoXf.Xf RrjrjrgF_ _) ]__qgaopsoon# h0T_o?u5e%wv4R&|q@"];@ B `U ;@ !%U)15UC@=AUIMQUUpa%@U i!m"q#U$ %}&'U() * @~ yJB ȏڏ}h1 -?Q~P ɟ(~` /A~ ~p 1~  s ~  D(#|  ewX?xjQtCU&KPJ5ψϚ}  i{ߔ%m?Vߋߝ~  k}~  (~  [m~r  ~ K]o~ w (~w ;M_q~w ~w" +/=/Z`#aO贁Nk?>A&&XT /////f ?0e#?52;?M?_?q??Q?2-E?52??? OO/?!?4kO}OZaOOGCpOK\* PR _XNah+5 c(ortavwTisPa)_)'Z<=_O_i{nT?z?xpe$J*K]/ژ}%@&A@@%=,Microsoft Office Document Imag/U d)LetterOaswidQm4|s:winspoolMicrosoft Office Document Image Writser  ing#? Port:F hTA@* ?<I?NXfx** <Ebb{b b NeH u ςw wwwww 1pw1ppSeI .< w0/JThis symbol represents the start or end of a program flow.evironm.b??6i6p:m?:?l4DH"'\h_T@W?@@54u44?P +q5~>~G(  u` HF@ u q~bbFeM MIL@`P>|IQc -*-)  ) /?S A`9Copyright 1995 Visio Corporation. All p"s reserved.r`Shape.hlp!#18115_'R9 lU0%a_`bb "%%U{)r< zW6 3a  rr/160r;0H38F* 0k3,!"23  2l2H`/iG?=d33 F?;0r`}Iop mrT!()r*R0QuGO"O%n `Cost4g!,Enter the csP associated withPis process IA A` $###,P.00r0QZO]`YmQDuR#h ~WdT ofSstepRX0Qm_W$nmQ ResourPBg!:~WnumbP`people qu[irPtoPm`{teStask q kKWw WThis symbol represents any kind of processing function. Double-click to add sub-page.H "'\ h_T@@, ?@u?,F?P +qu >~Gu` w?u qWb Nr 2 q-?,> L@o A`9Copyright 1995 Visio Corporation. All s reserved.r`Shape.hlp!#18035B,lU9LRa+ 'ҹ.!  K J E/5,>j/|-! '/(//) rrK 01!+0+0\zp.q Processi  'jh=kI h=qC0 =Y`~! 'E5@? 'Wb+G0I+(OiWo@bo@2o@mTTO:p5!W()r* AulH% `Cost4,Enter the c@ associated with@is p]3b` $###,/P.00rAZMIADu( GdhT {ofSstepX) AmD_s%A Resou]r_0B:Gnumb@Ppeoplequir Pto@mPteStasknD %C %Custom} \0pertiQ=80SetCGcPPdSe selecQs`~3b h.n Link To Pageb`a;no@r p`h#)Qk` /drpshdw yhoeDo_cumen@!%md>th')Q4^p~p qmb??6iߝ68??:4 _ Q);M_>m w =}Z'LTF-#B0QV} ;1CfG@ H+c+;|O*S49O^pF hTA@* ?<I?NXfx* <<bbb b NetH   ww wp"wx{,6wp누 ' wx wwww jppkwpj jc\RNwH66x"p >This symbol represents a decision or switching type fu7nct.H"'\h_T@@,%?,?>F?P >q G~ ~+~u`?u} ( b+/ /@X,FWFa VUU r%  2 q! ? /2& +L@c A`9Copyright 1995 Visio Corporation. All "s reserved.`Shape.hlp!#18040A6 lULF%aA++C )!" C0B0EP >> ?1*?P d?;&1? rVC0 @A1#@]#@\pO. wDec!nq" ; :+/?*?BBHW>G@+O6O?,Pb,P2,PmT!)*aQu`!%n r`Cost4w!,Enter the cP associated withPis process +b` $###,P.0 aQZ]YQDuR#x Wd%d ofSstepRXaQmog$nQ ResourPBw!:WnumbPG`people qu[irPtoPm`{teStask n F$S !%Custom Propertia8w!0SetSsP tFce _selecQs"1`Cb Ӏ\%n! Link To Pagew!~r`anoPr ppKx#Q}{` /drpshdw y\!b#~uDocumen*P!w!}dtKx'Q2V~Vqb?8i6?f?64  ~&8J\j o}'wbFL3R#B,;W3 ;}/HG@T SH+,'}Sh+;D<_}47$>F hTA@* ?<I?NXfx** <Ebb{b b NeH ! 3{߻w  1CU w{w{lww p ppwpv Q_ 3JUse in conjunction with deciss. Type "Yes" or "No" todicate result.b?6i68? H")w*}hT5@@, ?,+FP-DT!!u `u `bu `u z@Gu@Qxu|u` Qu  bޝ A@} $ $, 4G?+Mn?-NA?A"?Z$%?b?krL`-@& E u`.@ I`h o%a o%u n# C`&-&:#0O_Nk?{m &$L-= 2 2?"6;0 A`9Copyright 1995 Visio Corporation. All X2s reserved.`Shape.hlp!#18165&n }  tN`s@1 6lUa0G k!Aw!>6MMLii  0YewsmT)N!!1s(Au?F815h `Cost4O1,Enter the cP associated with/Pis process01` $###,gP.00AZM YQDup3(O1 *WdT {ofHSstepUX)Am|_?4n` ResourQPBO1:*Wnumb-PPpeople0qu[irAPto3Pm-`{teHStask0n!!$S 1 Link To PageO1}b:`ano0Pr p`US`#aQ|k` /drpshdw y0`o3}eD?ocumen!Pq`mddh'XaQoo@}v F@#BM_6 ;_TACTGW@O ++;O!}H+|PAQF hTA@* ?<I?NXfx** <Ebb{b b NeH u 3( {{ﻷ9 {{w p{ww \ F p߷ E E&3JUse in conjunction with deciss. Type "Yes" or "No" todicate result.H")w*}hT5@@, ?,+FP !u `u `bu `u z@Gu@Qxu|u` Qu  bޝ A@} $ +$,F44+?,V @B -nNA?A"k?$%?bkrL`;-@& E u`.@ &`h o%a o%u n# `&-&:#0O贁Nk?{(&$L-= 2 2?"6;0 A`9Copyright 1995 Visio Corporation. All X2s reserved.`Shape.hlp!#18170&n }  tN`s@1 6lUa0G k!Aw!>6MMLi9 j  NomT)!!1(Au?F81ih `Cost4O1,Enter the cP associated with.Pis process01` $##[#,fP.00AZM YQDup3(O1 )WdT ofGSstepTXAm{_?4n` ResourPPBO1:)Wnumb,PPpeople0quir@Pto2Pm,`teGStask0n!$S 1 Link To Pa_geO1|b9`ano/Pr p,`TS`#`Q{k` /drpsh?dw y0_o3|eDocumsen Pq`mddh'`Qoo@mb?6i6_,Ų? 8?}ZvE FD= %#B,?է3 ;N+&TG@ SH+T }SG+;P*,F hTA@* ?<I?NXfx** <Ebb{b b NeH @ 23 ߄3; +33;<G ;G cddbr cW 30GS-+$ 3eConnect the side of onbjoamanor. se horizontal flipget 9"'."H"&\h_T@?,@5+4+?P u `u `@  xubu '`u q{u`u Zu b  A@ )=3?,V9cBZK (CL@,YYAJ&I\ Q%JZ%a " r'`~rL`-@R& @& /$ u`.' $' V 0O贁Nk ?gkx'!bd4 d3 a0 A`9Copyright 1995 Visio Corporation. All 2s reserved.`Shape.hlp!#18145+hPlU+xI510.NEv (!T@  &  0A@-PArj Cr tAA"0"@-'BB!HG!">OTG (QxCiG _AdB~IDQPUO`p $@/_nnL C C @VCTS FbyA!c!`Y" iDAd1CЊAW `X Posi1 of Arm+ b?贁N{8i6??p= ףp }v3 F`q+#BTa , ;bיCXG@ cCH+iC+;_0.F hTA@* ?<I?NXfx** <Ebb{b b NeH J <3󎻂3;󿇻0 M; jn;9 A 30ߙ;u 3?Connect the side of onhape totop or bottoma;nor.b?6i6S?t= ףp?5H"&th_T@@@@,?>,FP u `u `bqu `u z xuu` Qu b ]A@   +?z5=@@?@.?6C5P+q# nwn=L@%P AQAI ?$ %?b د DL`-@& ^Y u`.@+r| -!<+0O贁Nk;?J'ml$$b4 3 a70 A`9Copyright 1995 Visio Corporation. All T2s reserved.`Shape.hlp!#18145  {l^U,110*74L&G+> U  }W@T!u }>@*E8!+5 }1: F$qN1#B4y3 ;tr2;H@rOS+;tS3H+s34t@ @:mߠF%@'()* "&4t@ @:mߠF%@()*+ "&4t@ @:mߠF%@()*, "&4t@ @:mߠF%@()*- "&4t@ @:mߠF%@()*0 "&,t@ @:m_F%@1 ,t@ @:m_F%@3 4!@&()*1 "&4!@&()*2 "&4!@&()*3 "&4!@&()* "&4!@&()*5 "&4!@&()*6 "&4!@&()*7 "&4!@&()*8 "&4!@&()*9 "&4!@&()*: "&4!@&()*; "&4!@&"()* &4!@&()*< "&0!@:&=> $,!@&? ,!@& e,!@&A 5 4!@&()*B "&4!@&()*C "&e,!@&D 5 4!@&()*E "&,!@&F ,!@&G ,!@&H ,!@&I ,!@&J ,!@&K ,!@&L ,!@&M ,!@&N ,!@&O ,!@&P ,!@&Q )@B ;62(mT#'<'C7(X5W,JcagWU%{ ׇ !8 F k $U9 I7n7#{U7{7{7!{7:R 7X}jV;h1',O',Um',',','$*SxB#/(/DO$z/ *~/\i0\r5{ 0BTfx//,/>/P/b/t//?R$+; % @3,@g 6Ac:?K c:\program files\visio\stencilsandard\Flowchart Shapes.vss Oas`d 2 25*H*-qD?@&FT L*hGTIt@ @I:mӷF%@?9I FIzbbb b =NenHo gptWxoowo"o* o2{p: oB oJ oRpZobojorpzoUT !z r j Ub Z R J UB : 2 * U"    InNy'+I,W-{./0134//H.TIK j@8i6?@ i$@!?!5 g?P @9$&  6 g Wp2  ???QsWl_U=!?G60LL#7?F6KO!lF2ODG|ui{  W%mW"eoUe()I*Bm.O0]?LmASTARTqnmK6@gp9dP{0r7=tOV/H`JPLP8PtoUA " GW/' D,CE"( 7.c#?5?d2qw`?vof fjjg b% @o31p2o0~0 W r }2 0 ]35HU8XF6R{.eF tJyX@D@Ml@X#,G3.eLC%INPUT VALUES FOR a1 TO aWni'TD]U/'2rb_@%%%%G!>wFECUg9x?2!?Ǐu동!ϏEW/ʐgʐjAT03 0c.& ! ?8Fg:`WknQ ~W@OOLq}0mN@eYW^ ytQ y6m@dVdtVdS,PToZ@_4_ n#o5oGoYnroHϖoooooe r rqY W }2e/ASewBߛ|L b b)%o=~fx3O :c!ʟܟ$6HZl~Ưد ]XtQY7IčVT 1ǽ0ؿ8@66%H? :m0d! q U4" }2&Q$S}2Ua/gyϋϝg0 P5JB/1*s߅ߗѡEU# an = ?@(Q*Iit Q?}+t;:O_VOhOOOOO+OOO _2_ V_h___^6o 2DVbt R874)4)?'$'$(?7F)F)U]Lq8 ".*@;7UD$zc;4L"L"؀BUHT!}N!qj/|///T/# Ys‡p//B&??5?֖P?b?y??֭f700IMPERIL???B EH%Q,O_PO^C[q_ -2/I[_{Kÿq1#ѿGY?}=ϳϙsϩπCUyߋ۔[<o#%o@oIo[omoooooooooxބvބߟ퇽qqv^t@ @ 'U /Ձ#"I$!dI0!S"&i0 6 0 0+E?'56PLAN A NEW ROUTE u0r 1u  /{ Eq / eu ᝯ Hu P~ 贁N6$6H^5ke?/ASe*(Dր02epYO*<Ugy( (ISv)̠@ __fٵ_:_V_\2__`P__jΤ)aoM_q#///娹w9A9. i#+tP-DT!!$@C# PPp Q@r @z3@rnrp "A eA??6eҙ~66QÏ  tN`zs@a eiW`R%;I BF@`ٿ1Z!Y kU&$ZZ$w-vPPbunv^U1W( i!/C -?Q c x#+r $Y$kx.?y B O{>(1'2BB@/b&#n'/9/K/].@i<}/8/ /P//?c ߠ,?"qON^5*Rtc,QE b$d"l"q*Czoybo,nPObOP}O-N`Cn vOn0_" T_a_$ }___۠Z@_P?0&+th,>^5=Frg m Jx@@ˆotO+Z0/͒͒Tfq}ZG !"4FV|Pmhdieg5h`>g5y5vFbc Pigdbck d떿d̲̿㻟**d*ŗUIGϖEſX>Ӝ Q*p4<V2ƫ\MzDf0fXv9<2ȪKB341 Z_#_ @@bÏՏY ml44øjٽlbޅѵ _ n 1~e!үfx ie @@)ON)D>=lMo3bcie,cAfA m?>"u DVhzZX^{d ),)Z=V)No0:;?#g80($,542?fS2KS?m(-|!{"22F6D7I[C-DBY+/P_So*}/ //@5o,o/ bN6 \R_fdRk_o??ж??7s!Q Rbb`? CCut O2ODOzOwa>O'SOOOOaHt@ @:mF%@'()*+,-./0134 6-<@B ^PH>ܺ@ĩXP}?R2Page-1Black fill_White }uRed Green -Cya@Yellow GMnta3a=y(10% x line3 Long dash1"da%rI9e. X5 7 9 1Gpxlm9mHairqShort Arial cke?redtop leftTim esConnectorF[Normal0"$ 8pt |1 !. arr\endG"$"c% textG T?ermina!/ stuDuration ResourcesPro sDaDecis!r6!ulSt.!.11-#2 No r#Side same3 s Si'/bottom '8PaDig1*3Low # 63RAuUn>010P1NA0\1CA0S10Bm4x5TA1A0t15p1An33U0000U0000U0~0z0v0Ur0n0j0f0Ub0^0Z0V0UR0N0J0F0UB0>0:080)000W3!@!@!@U!@!@!@!@U!@!@!@j!@UV!@>!@0!@!!@!@!A3 3i@i@i@i@i@i@xi@hi@Xi@Gi@4i@$i@i@3媥@ӥ@@@@@@r@d@U@G@<@-@@ @R|&t@ @:mF%@  !"#$%! f pl 2@B$YBT< 4ocCUgy%"(,)$&#   >HB_ 70AD:37C59.8'=>   "$/)/;/M/_/ j//////+}*-s/1g' !-  4?<4$YCf17k8obǹUsi#L O+!)e]..912ps3k 5ws'\F L9E$ 27$37X/\!(?71Hb8 vo^%`~&i ;D?ً60f̨|V&K|QF`72A'Yǟ$/:z\t`^MLLJ% @61u(2t5B fIMDd \  c $A? ?#" `2Ķji[ `!Ķji[ @Fxcdd``~ @c112BYL%bpu2@0&dT20<_&,ebabMa`p(İb@`8W6B]j muɜi%<̻y ̇Bmǝ 1jn+DAd++&_ ͫτ0YCCD O732BXg6ko ogcO 0+HDGOOC}u 7AS;+KRslbPdk1} NRDd (Cz(\B]@I-on/w?`/73ofv~,B@0yP?Nb1߲[reEX&0H#zZG4V(zV[Y 4OO!4bߚAx*k_8ӃŖe>lTLw{d{;aUտΩ8뢝kۺq$\w3Mp1Z 8N**鱋z,SN\[ Z *=!Tb=~, 89|\_3V@.L7_4xdǞiBGQOvW* mN+)0ukhK(gB%K ")TQ P2)K"eh'Ɯk{Iti"0_Y)TRo Pno^ < qfk9\4_G_|ߙyVKw}~g=1O6k`q)\AʕT>m+lI+V.[Mpjik]+Ҏ@-`V*Enmv Qcy+;Tس}Og)#{4t%i)|[BEu<e3?YՉ#d\µM=˓,3;/!i{$uѥ{(fld*l7Kw3Rg/sЊyFng ?Ms6&"Ю&I+kX8f/^q5ϕ}ʝOz>L~TE4iag4\4̺݆I+;\clAxlMŠc\ )muz?ʓr_BF&D%NftHi7gR e VJH9;T,?5G[ܪ)Y.mjVMkH+;\;G=Y"n>-^eaC*02]FKVrY.YarFҤ=4iTb1DyK  www.iho.orgyK (http://www.iho.org/DyK  www.imo.orgyK (http://www.imo.org/4 T ` l x,METEOROLOKA PLOVIDBA I SIGURNOST PLOVIDBEJokeNormalpero2Microsoft Office Word@@J˂@ت|@ت|i tL՜.+,D՜.+,X hp|   -Y +METEOROLOKA PLOVIDBA I SIGURNOST PLOVIDBE TitleD 8@ _PID_HLINKSAa%http://www.imo.org/d%http://www.iho.org/Jhttp://www.isb.gov.uk/hmt.isb.application.2/BIDDERS/Final Evaluations/2 41 Electronic delivery of Weather forecasts on Admirality Chart feasibility study report.pdf mailto:pvidan@pfst.hr mailto:pvidan@pfst.hr  FMicrosoft Office Word Document MSWordDocWord.Document.89q@@@ NormalCJ_HaJmH sH tH P@P Heading 1$$@&a$5CJ\aJmHsHj@"j Heading 2dd@&[$\$*5CJ$OJPJQJ\^JaJ$mHsHtHNN Heading 3$$@&a$6CJaJmH sH `@` Heading 4$$dh@&a$5CJOJQJ^JaJmHsHj@j Heading 5$$dh@&`a$"5CJOJQJ\^JaJmHsHz@z Heading 6-$$ & F 8dh@&`a$5CJOJQJ^JaJmHsHDA@D Default Paragraph FontVi@V  Table Normal :V 44 la (k(No List 4U@4 Hyperlink >*phJBJ Body Text$a$5CJ \mHsHtHe HTML Preformatted7 2( Px 4 #\'*.25@9)B*CJOJQJ^JaJmHphsHtHO! a"O1" a1phNP@BN Body Text 2$dha$CJaJmHsH`C@R` Body Text Indent$hdh`ha$CJaJmHsHL>@bL Title$a$5CJOJQJ^JaJmHsHR@r Body Text Indent 2, uvlaka 2$dh`a$CJOJQJ^JaJmHsH>@>  Footnote TextCJaJ@&@ Footnote ReferenceH*4@4 fTHeader  p#.)@. fT Page NumberZ123DE8 {    !  ? b j QQTUVQ<AB:Ufm F} !#%%(E+,-.{0t111<2u2233*3H3n33334445V7 9d:<==S=T=\=]============>>> >#>%>&>)>>>I>J>M>R>>>>>>>>>>>>?0?1?4?@?p?q?u??????????????@@ @'@.@/@1@2@m@n@v@w@@@@@@@@AAA!AEAPAQATAiArAsAvAAAAAAAAABFBGBJBRBZB[B\BCCCDDD?D@DLEE*F@FhFiFGGGG HHPHHHIIGJHJIJJJKJLJMJjJkJJJJKKK LLLLLLMMMM|N}NOOOOOOOOPQRgShSiSjSvSwSSyUIVJV@WAWWWX XXXJYKYYYYYYYYYYYYYYYYYYZZ00000000000000H00H000X00303030303030303030303 03 030303030303 03 030303030303" 0303030303 03 03 0303030303030303 03 030303 03 03 03 03 03 03 03 03 03 0 3 0 3 0 3 0 3 0 303030303030303030303030303030303 03 03 03 03 03 030303 03 03 03 03 03 03 030303030303030303030303 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 0303030303 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 030303 03 0303030303030303 03 0303030303030303030303030303030303030303030303030303 03 03 030303030303030303030303030303030303 0230=0=0=0=0=0=0=0=0=0=0=00S0S0S0S00S0S0S0S0S0S0S0S0S0S0S0@0I00@0I00@0I00@0I0000 $0000@0@0I00t#%%(E+,-.{0445V7 9d:<M|N}NOJV@WAWWWX XXXJYKYYYYYYYYZ@0@0@000,0000 0 0 00 00 0 TG0 00 00000 00J000000J0000 00 00 00 000000 @00000 000 0&0$@0@0 00$ $$$$$'B L& 6EIMTQ$UX\`b,E25679:=?AEV`aceghlmop""()?=IlII J:JvJJ0KKLFLLLLL2MDMMMM3NfNNNN\OpO1QVZ}`CE38;<>@BCDFGHIJKLMNOPQRSTUWXYZ[\]^_bdfnqD4@O@elGGGH"H$HMJfJhJhT5U^U`XXXY"Y.YZXX:::XXX  '!!8@0(  B S  ?T56T5T5T5 T5wT5T5T5T5lT5T5KT5KT5,T5T5 ]mT5 cT5$T5kT5dT5T5.T5,/T5JT5TJ$SSSSWWWWWWWYYYZ      $SSSSWWWWWXXYYYZ   B*urn:schemas-microsoft-com:office:smarttagscountry-region9 *urn:schemas-microsoft-com:office:smarttagsState8*urn:schemas-microsoft-com:office:smarttagsCity9*urn:schemas-microsoft-com:office:smarttagsplace `4"   Opwx$@lc i j x  T]'$$r,z,????GBIBDEFFMMMMUUaVeVJWOWRW^WuWWWWWWX'X{YYYYYYYYYYYYYYYYYYYYZZ?@))J*M*2244!=5=>>CDFF@FLF H HPHSHKKLLLLMMMMlNnNNNOOSSSTVVWWWWX5XYYYYYYYYYYYYYYYYYYZZ333333333333333333333333333l3Fq    RRTQ=PBF_B}2)!!]$ %Z%%'_))d++-./0|0u22*3H3344V7=8d:0;<{<< ==T=#>&>/@n@\BCCDD@DEGGMJkJM}NOOOOQiSjSuSwSSJVAWW XXKYYYYYYYYYYYYYYZZYYYYYYYYYYYYYZZ e7"|d u. V ~X$L Jr{:ߤey\Ȯ4XΩZ'Bh3H#zՄmn&@U'V~4ڡc7f|4V> !Xo>lr^x? `?]?-^{c@dʝ/YA., Drr"DPFE-tKZ|+g3[Yua,&aZb*&$jMu2klVHGlFfm7ivVoZJy\o>U'J>> >#>%>&>)>>>I>J>M>R>>>>>>>>>>>>?0?1?4?@?p?q?u??????????????@@ @'@.@/@n@v@w@@@@@@@@AAA!AEAPAQATAiArAsAvAAAAAAAAABFBGBJBRBZB[BLEXZ/!0$$;0/h/h/h/h@hSp=>VZ`@` `@`$`&`P@`J`@`@UnknownGz Times New Roman5Symbol3& z ArialI& ??Arial Unicode MS?5 z Courier New;Wingdings"1h*릈*WT&i tL-i tL-!4dYY 2qHP ?3z2*METEOROLO`KA PLOVIDBA I SIGURNOST PLOVIDBEJokepero                           CompObj1q