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Abstract: This paper describes a procedure that utilizes a series of off-line algorithms for
pre-planning a two-dimensional path for an AUV in a cluttered waterspace. The trajectory is
planned as a clothoidal spline or interpolation based on the work of Shin and Singh (1990)
between a sequence of objective points. The former are calculated by a method proposed by the
authors, based on the traversal of vertices of apriori known obstacles modeled on a concise set
of geometrical primitives. The objective points are first sequenced and then extraneous ones are
pruned. Finally, the technique of Shin and Singh (1990) and numerical approximation of clothoid
parameters is applied to calculating the final path through the obstacle-strewn waterspace.

Keywords: Navigation, guidance and control of unmanned marine vessels (surface and
underwater); Autonomous and remotely operated (surface and underwater) marine vessels;
Surveillance and supervision systems in marine applications

1. INTRODUCTION

The technology of autonomous underwater vehicles has
been experiencing a steady progress in the last 30 years,
and is at the verge of being accepted as a mature field
of engineering (Bildberg (2009)). Most marketed AUVs
come equipped with software for human operator / mission
director assisted path or trajectory planning. The most
often used methodology is providing the human operator
with tools allowing the drafting of a mission plan con-
sisting of a piecewise-affine path connecting a sequence of
“clickable” set-points defined by latitude and longitude,
augmented with reference depths (or altitudes off the bot-
tom). Reference cruise speeds are specified for each affine
segment. To increase situation awareness that contributes
to the human operator’s reasoning while drafting a mission
plan, different sensor records (e.g. side-scan sonar, ADCP
readings, interferometric sonar, multibeam sonar) can be
layered on top of the basic geographic mission view in order
to augment the a priori awareness of a static waterspace
to as near as perfect as possible (Brutzman (1994), Lee
(2004), deArruda (2009)).

The authors propose an algorithm of human-unassisted
creation of a missions to be cruised. For this paper, the
proposed solution maintains the limitations originally im-
posed on the human planner being emulated – namely,
perfect or near-perfect situational awareness of the wa-
terspace. For the benefit of the computer, this knowledge is
assumed to be encoded in a database of obstacles, classified
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as instances of one of two fundamental types: a rectangle
or a circle.

Section 2 defines the relevant terms used in the formulation
of the obstacles in the 2D waterspace. Section 3 develops
the algorithm for the interpolation of the objective points
of the mission. Section 4 describes the process of the
calculation of pairs or triplets of clothoidal curves used
to span the sparse sequence of objective points rendered
on the basis of the geometry of clutter of the waterspace to
be navigated. The sequentialized algorithms in the former
and the latter section represent the proposed algorithm.
Section 5 concludes the paper.

2. GEOMETRICAL PRIMITIVES MODELING THE
OBSTACLES

The waterspace, represented by R
2 is supposed to be

populated by obstacles that represent the instances of two
classes: generalized rectangles and generalized circles. The
perfect a priori knowledge of the pose (i.e. position of the
geometric center and angular offset) of the rectangular
obstacles is given by (1), according to figure 1.a). The
circular obstacles are described by (2), according to figure
1.b).

Arect =
(

zrect, [a b]T
)

(1)

Acirc = (zcirc, r) (2)

(3)

Where:
- zrect = [xrectyrectψrect]T is the pose of the rectan-
gle, separable into the position of the rectangle center
(xrect, yrect) ∈ R

2 and the orientation of the rectangle-
fixed x-axis w.r.t. the northward-pointing x-axis of the NE



Earth-fixed frame, cf. figure 1.a),
- [ab]T is the vector of rectangle dimensions in the direction
of the x- (length) and y-axes (width) of the rectangle-fixed
frame, cf. figure 1.a),
- zcirc = [xcircycirc0]T is the pose of the circle, wherein
only the position of the circle center (xcirc, ycirc) ∈ R

2

w.r.t. the NE Earth-fixed frame is non-trivial, and the
orientation is identically equal to zero, due to the pointwise
symmetry of circles, cf. figure 1.b),
- r is the radius of the circle, cf. figure 1.b).

(a) Rectangular obstacle (b) Circular obstacle

Fig. 1. The representations of obstacles with perfect knowl-
edge of parameters.

3. INTERPOLATION OF OBJECTIVE POINTS

When considering the problem of trajectory planning,
the solution procedure can be approached by a two-stage
strategy:

(1) Identifying safe, minimally distant, efficiently placed
and objective-fulfilling objective points between which
line of sight and line of navigation is guaranteed,
interspersed throughout a cluttered or unsafe water-
space.

(2) Generating in a piece-wise manner the reference sig-
nals for the actuators of the AUV that guarantee sta-
ble, accurate navigation in between sequential pairs
of points chosen from the above generated set.

The first task on the above list will be further subdivided
into first generating a dense set of candidate objective
points and then pruning of the set to arrive at a sparse
sequence of points to be used in the second task. The
generation of the dense sequence (tuple) of candidate
objective points Oc = (o1,o2, . . . ,on) will be based on a P-
complex, halting algorithm incorporating straightforward
geometrical rules, presented in table 1.

Prior to running Algorithm 1, all obstacles are extended
by a safety-radius at least equal to (or greater than) the
radius of the AUV-circumscribing circle, as presented in
figure 2. Rectangular obstacles are extended using ∞-
norm, preserving the rectangular shape in lieu of circularly
beveled corners (as seen in figure 2).

The result of Algorithm 1 is presented in figure 4. The
denseness and failure in achieving optimality in Oc is evi-
dent in the existence of points additional to those defining
the least number of uncluttered lines of navigation.

A good example of this suboptimal behavior of Algorithm
1 is in the asterisk- (*) marked procedure used to assure
circumnavigation of circular obstacles. The if clause pro-
duces the manner of circumnavigation displayed in figure
3.

(a) AUV-circumcircle (b) Extension of obstacles by
AUV-circumcircle

Fig. 2. The principle of obstacle extension by AUV-
circumcircle.

Table 1. The candidate objective point inter-
polation algorithm.

set initial point ob

set final point to oe

push onto Oc ← ob

oc = ob

while oc 6= oe

if oc on a rectangle and oc 6= arg min d(vertices,oe)

on = the vertex of rectangle adjacent to oc that

decreases d(·,oe)

if both adjacent vertices decrease d(·, oe)

on = the one closest to oboe

end if

else if oc not on a circle

on = boundary point of the obstacle closest to oc

(notwithstanding the obstacle that oc is on or in)

among the set of all obstacles closer to oe than oc

else

on = boundary point of the obstacle closest to

the center of the circle on which perimeter oc lies

(notwithstanding the obstacle that oc is on or in)

among the set of all obstacles closer to oe than oc

x3 = the point on circle boundary

intersected by line from circle center to on

α = the bisector of azimuths of oc and x3

w.r.t. the circle center

x0 = point of circle perimeter with azimuth α

k1 = slope of tangent to circle at oc

k0 = slope of tangent to circle at x0

k2 = slope of tangent to circle at x3

x1 = intersection of [1 k1 ]Tλ + oc

and [1 k0 ]Tµ + x0.

x2 = intersection of [1 k0 ]Tµ + x0

and [1 k2 ]Tν + x3.

push onto Oc ← x1, x2, x3

end if

push onto Oc ← on

oc = on

end while

Fig. 3. The circumnavigation of circular obstacles.

The produced sequence of candidate objective points Oc is
finally pruned using Algorithm 2 to produce the final set of
objective points Of presented in figure 5. This represents
the final sequence containing the least number of points
that are navigable in sequence along non-occluded lines
in the 2D waterspace, from the given initial point to the
given final point.
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Fig. 4. The interpolated sequence of objective points Oc.

Table 2. The pruning algorithm.

n = length(Oc)

while n≥2

j = n-2

del = n

while j≥1

if Oc(j) visible from Oc(n)

del = j+1

end if

j=j-1

end while

delete from Oc elements from i-1 through del

(if del≤i-1)

i = del-1

end while
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Fig. 5. The final pruned sequence of objective points Of .

Such a finalized sequence of objective points, Of is used as
initial data for the algorithms of clothoid fitting described
in the next section.

4. CLOTHOID-SPLINE PATHS

A clothoid, Euler spiral or Cornu spiral (Abramowitz
and Stegun (1964)) is a parametric bi-spiral curve, with
the property that the curvature varies linearly between
−∞ and ∞ in the limits. The measure of differential
increase in the curvature C(s) across the path of the
curve, called sharpness, k, is constant, producing for a
vehicle traversing a clothoid-shaped path with constant
forward speed a directly proportional and constant angular
acceleration. This class of curves accordingly represents
an ideal candidate for a spline used to plan posture-
continuous trajectories in mobile robotics. The research in
the application of clothoids for the calculation of posture-
continuous paths is proceeding and the most proliferate
research area in robotics that explores the application
of piecewise-clothoid path segments is 2D path-planning
(Wilde (2009), Yossawee et al. (2002), Shimizu et al.
(2006), Zelinsky and Dowson (1992)). Research is also
ongoing in 3D path-planning using clothoids (Guiqing
et al. (2001), Liu et al. (2007)).

The difficulty with clothoid splines is that the parametric
forms in terms of clothoid curve length s for the coordi-
nates in the R

2 waterspace of discourse, (x, y) are Fresnel
integrals for which no closed-form solution is obtainable.
All clothoids, regardless of initial curvature and initial
coordinates are reducible by a variety of scaling transfor-
mations to the two basic Fresnel integrals in (4, 5).

x(s) =

∫ s

0

cos
(

σ2
)

dσ (4)

y(s) =

∫ s

0

sin
(

σ2
)

dσ (5)

Additionally, for a general problem of linking a pair of
poses x1,x2 ∈ SE

2, which are positions augmented by
a reference orientation, x1 = [o1

∣

∣ψ1 ]
T, x2 = [o2

∣

∣ ψ2 ]
T,

Shin and Singh (1990) have shown that minimally three
clothoid segments of the same amount (and possibly
differing signs) of shaprness are required.

Prior to the numerical calculation of the parameters of the
three (or two) clothoid segments comprising the trajectory,
all oi ∈ Of need to be augmented by reference directions.
Also, as starting points for the determination of the lengths

(s
(i)
1 , s

(i)
2 , s

(i)
3 ) and sharpness k(i) of each triplet (or pair)

of clothoids, initial and final curvatures, (C
(i)
i , C

(i)
f ) need

to be determined from Of .

4.1 Determination of Heading and Curvature

In order to allow for the numerical calculation of triplets
(or pairs) of clothoids comprising a trajectory of the
AUV, the sequence of objective points Of , obtained by
algorithms described in Section 3 need to be augmented
by reference headings and reference path curvatures. This
will be performed based on the method presented by Shin
and Singh (1990).

The headings (ψi) will be determined on the bases of
a circumcircle of a triangle △oi−1, i, i+1, with the center
specified by (7) and radius by (8). The headings corre-
spond to the angles of the circle tangent through oi ∈



Of , dimOf = n, i 6= 1, n, whose unit direction vector is
given in (12). The headings are given in (13). The initial
curvatures at each oi, i 6= 1, n will be the reciprocals of the
circumcircular radii given in (8), according to (14). The
posture-continuity of the required trajectory dictates that

the final curvature c
(i)
f for each triplet of clothoids will be

∀i = 1 . . . n, c
(i)
f

id
= c

(i+1)
i . In the ensuing formulas, a slight

abuse of notation is used by adopting the arctan2(
y
x
) four-

quadrant arc-tangent that returns an angle in the range of
[0, 2π) depending on the signs of the numerator expression
(x) and denominator expression (y).

dimOf = n

Of = (oi), i = 1 . . . n

∀i oi =

[

xi

yi

]

(6)

∀i ci =

[

x(i)
c

y(i)
c

]

(7)

x(i)
c =

1

D

[

‖oi−1‖(yi − yi+1) + ‖oi‖(yi+1 − yi−1)

+ ‖oi+1‖(yi−1 − yi)
]

y(i)
c =

1

D

[

‖oi−1‖(xi+1 − xi) + ‖oi‖(xi−1 − xi+1)

+ ‖oi+1‖(xi − xi− 1)
]

D
def
= 2

[

xi−1(yi − yi+1) + xi(yi+1 − yi−1)

+ xi+1(yi−1 − yi)
]

∀i r(i)c =
‖oi+1 − oi‖ · ‖oi − oi−1‖ · ‖oi−1 − oi+1‖

2

√

s(s− ‖oi+1 − oi‖)(s− ‖oi − oi−1‖)·
·(s− ‖oi−1 − oi+1‖)

(8)

s
def
=

1

2

(

‖oi+1 − oi‖ + ‖oi − oi−1‖

+‖oi−1 − oi+1‖
)

n̂ i
def
=

ci − oi

r
(i)
c

(9)

∆oi
def
=

oi+1 − oi

‖oi+1 − oi‖
, ‖∆oi‖

id
= 1 (10)

û i =

[

u(i)
x

u(i)
y

]

(11)

= sign

(

∆oT
i

[

0 −1
1 0

]

n̂ i

)[

0 −1
1 0

]

n̂ i (12)

∀i ψi = arctan2
u

(i)
y

u
(i)
x

(13)

C
(i)
i =

1

r
(i)
c

(14)

C
(i)
f

id
=C

(i+1)
i =

1

r
(i+1)
c

(15)

Where:
- n is the number of objective points,
- ci = [x(i)

c y(i)
c ]T is the center of the circumcircle of the

triangle △oi−1, i, i+1,

- r
(i)
c is the radius of the circumcircle of △oi−1, i, i+1,

- n̂i is the unit inward-facing normal vector to the circum-
circle of △oi−1oioi+1 at oi,

- û i = [u(i)
x u(i)

y ]T,

√

u
(i) 2
x + u

(i) 2
y

id
= 1 is the unit tangent

vector to the circumcircle of △oi−1, i, i+1, at oi, facing
towards oi+1.

For the initial point o1
id
= ob, and the final point on

id
= oe

the heading and curvature settings are given below:

û1
id
= ∆oi (16)

ûn
id
= ∆on−1 (17)

ψ1, n = arctan2
u

(1, n)
y

u
(1, n)
x

(18)

C1 = Cn
id
= 0 (19)

The figure 6 displays the Of (cf. fig. 5) with the augmen-
tations of (ψi), (Ci) according to (12,13,14).
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Fig. 6. Objective points Of augmented by (ψi), (Ci).

4.2 Numerical Approximation of Clothoid Arcs

As explained previously, clothoid curves cannot be solved
for (x, y) ∈ R

2 in closed form. Therefore, a heuristic
numerical approximation method is adopted that uses the
heuristic based on the (ψi), (Ci) sequences in the previous
subsection.

Consider the equations for a triplet of directed clothoid
arcs of identical amount of sharpness, ki, albeit with
a changeover in sign for each segment in the form of
a triplet of sharpness parameters (ki,−ki, ki), of path

lengths (s
(i)
1 , s

(i)
2 , s

(i)
3 ), and with the objective point index

i omitted for clarity:



∀s ∈ [0, s1 + s2 + s3)

C(s) =Ci (20)

+







s ≤ s1 : ks

s1 < s ≤ s1 + s2 : k(2s1 − s)

s2 < s ≤ s1 + s2 + s3 : k(s− 2s2)

(21)

Cf
id
=Ci + k(s1 − s2 + s3) (22)

ψ(s) = ψi (23)

+







































s ≤ s1 : Cis+
k

2
s2

s1 < s ≤
∑2

i si : (Ci + 2ks1)s

−
k

2
(2s21 − s2)

∑2
i si < s ≤

∑3
i si : Cis− 2ks2(s− s1)

+
k

2
(2s22 + s2)

(24)

ψf
id
= ψi+1

id
= ψi + Ci(s1 + s2 + s3) + k(s1s2 − s2s3 + s1s3)

+
k

2
(s21 − s22 + s23) (25)

x(s) =

∫ s

0

cosψ(σ) dσ (26)

y(s) =

∫ s

0

sinψ(σ) dσ (27)

The equations (22 – 27) form a system of 4 equations
in 4 unknowns - (s1, s2, s3, k), that can be used for
the fitting of clothoid arcs to a pair of objective points
(oi, oi+1). Since (26, 27) have no closed form solution, a
successive approximation numerical method will include
an optimization over (s1, s2) ∈ R

+2. The initial pair
of values will be based on the length of circular arcs of
osculating circles. The osculating circles (C i) are defined
by their respective centers in (7) and radii in (8). From

those, s
(0)
1, 2, 3 can be initialized. In the case of differing signs

of clothoid segments, when connection by a pair of clothoid

segments is possible, s
(0)
1 2 , s

(0)
3

id
= 0 are initialized to half

the average of the length of the arcs connecting a pair of
points (oi, oi+1) measured along the two osculating circles
(of curvatures Ci, Ci+1) through the pair. Otherwise,

s
(0)
1 , s

(0)
2 are initialized to thirds of the average arc length.

This is summarized in equations (28 – 35).

∀i = 1, . . . n

ϕ
(i)
i = arctan2

(oi − ci)̂

(oi − ci)ı̂
(28)

ϕ
(i)
i+1 = arctan2

(oi+1 − ci)̂

(oi+1 − ci)ı̂
(29)

ϕ
(i+1)
i = arctan2

(oi − ci+1)̂

(oi − ci+1)ı̂
(30)

ϕ
(i+1)
i+1 = arctan2

(oi+1 − ci+1)̂

(oi+1 − ci+1)ı̂
(31)

l
(i)
i = r(i)c ∆ϕ(i)

= r(i)c (ϕ
(i)
i+1 − ϕ

(i)
i ) (32)

Table 3. The fitting algorithm.

for i = 1:number of objective points-1

initialize s
(0; i)
1 , s

(0; i)
2 according to (28 - 35)

do

solve (22, 25) to obtain s
(0; i)
3 , k

(0)
i

solve by means of 1000-step Euler solver eqns. (26, 27)

increment no. of iteration j

until ‖[x(s
(j; i)
1

+ s
(j; i)
2

+ s
(j; i)
3

) y(s
(j; i)
1

+ s
(j; i)
2

+ s
(j; i)
3

)]
T − oi+1‖ <

half the greatest dimension of the AUV

end for

l
(i)
i+1 = r(i+1)

c ∆ϕ(i+1)

= r(i+1)
c (ϕ

(i+1)
i+1 − ϕ

(i+1)
i ) (33)

sign(ki) 6= sign(ki+1)

⇒ s
(0; i)
1 = s

(0; i)
2 =

l
(i)
i + l

(i)
i+1

4
(34)

otherwise

⇒ s
(0; i)
1 = s

(0; i)
2 =

l
(i)
i + l

(i)
i+1

6
(35)

Where:
- ϕ

(i)
i, i+1 are the angles subtended by the radii through

points oi, i+1 on the osculating circle C i,

- ϕ
(i+1)
i, i+1 are the angles subtended by the radii through

points oi, i+1 on the osculating circle C i+1,

- l
(i)
i, i+1 are the arc lengths between points oi, i+1 measured

on the osculating circles C i, i+1, respectively.

Using the initialization described in (28 - 35), the equa-
tions (22), 25) to obtain (s3, k) on the basis of heuristics
for (s1, s2), and a 1000-point based Euler solver to solve
(26, 27), the fitting algorithm in table 3 is used to connect
the objective points Of in a posture-continuous manner
dictated by (ψi, Ci).

The path resulting from the objective point fit and aug-
mentation by (ψi, Ci) as depicted in figure 6, using the
algorithm specified in table 3, is depicted in figure 7.
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5. CONCLUSIONS AND FURTHER WORK

5.1 Conclusions

An algorithm for the design of a posture-continuous path
for an AUV navigating in a cluttered waterspace has been
presented. The algorithm relies on a priori knowledge of
a static and stationary situation within the waterspace,
in terms of the location and models of obstacles, drawn
from a pair of geometric primitives – rectangles and circles.
The algorithm functions swiftly, robustly, and is able to
deal with a large degree of congestion in the waterspace.
These features make it an ideal choice for inclusion in
a subsequent automated trajectory generation algorithm,
which can be used for designing on-the-fly trajectories for
AUVs performing inspection, monitoring or observation
around colonnades of piers, supports, girders or other
periodical and interspersed clutter.

5.2 Further Work

The algorithm shall be tested on the Iver 2 AUV operated
by the authors’ laboratory (Barisic et al. (2010)) in the
spring–summer of 2010. The leverage that modern parallel
programming paradigms (cf. CUDATM by AMD, and the
on-going work by de P. Veronese and Krohling (2009),
Karunadasa and Ranasinghe (2009), Kumar et al. (2009)
and Breitbart (2009)) can provide to this type of algorithm
will be investigated. Brezak (2010) gives a good treatment
of the optimization necessary to allow this type of function
to be performed by an embedded computer in soft real-
time.
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