Pregled bibliografske jedinice broj: 483792
Goldberg Coxeter construction for 3- or 4-valent plane maps
Goldberg Coxeter construction for 3- or 4-valent plane maps // Colloquium of Math. Department of Bar Ilan university
Tel Aviv, Izrael, 2003. (predavanje, međunarodna recenzija, pp prezentacija, znanstveni)
CROSBI ID: 483792 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Goldberg Coxeter construction for 3- or 4-valent plane maps
Autori
Dutour, Mathieu ; Deza, Michel
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni
Izvornik
Colloquium of Math. Department of Bar Ilan university
/ - , 2003
Skup
Colloquium of Math. Department of Bar Ilan university
Mjesto i datum
Tel Aviv, Izrael, 04.2003
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Goldberg Coxeter construction; modular group
Sažetak
We consider the Goldberg-Coxeter construction GC(k, l, G0) (a generalization of a simplicial subdivision of Dodecahedron considered), which produces a plane graph from any 3- or 4-valent plane graph for integer parameters k, l. A zigzag in a plane graph is a circuit of edges, such that any two, but no three, consecutive edges belong to the same face ; a central circuit in a 4-valent plane graph G is a circuit of edges, such that no two consecutive edges belong to the same face. We study the zigzag (or central circuit) structure of the resulting graph using the algebraic formalism of the moving group, the (k, l)-product and a finite index subgroup of SL2(Z), whose elements preserve the above structure. We also study the intersection pattern of zigzags (or central circuits) of GC(k, l, G0) and consider its projections, obtained by removing all but one zigzags (or central circuits).
Izvorni jezik
Engleski
Znanstvena područja
Matematika