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ABSTRACT 

Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting 
tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral 
responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or 
PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the 
number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the 
spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image 
tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image 
preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based 
decomposition methods (such as non-negative matrix factorization and independent component analysis) are 
used. Superior performance of the tensor-based image decomposition over matrix factorization-based 
decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as 
well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).  
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1. INTRODUCTION 
Increased occurrence of the skin cancer all over the world, [1], implies the large need for complementary 
methods for detection and accurate demarcation of skin cancers at an early stage to limit the damage caused 
by the tumors [2]. Photodynamic diagnoses (PDD) is a method for tumor demarcation that is based on the 
visualization of a fluorophore, with the ability to accumulate in tumor tissue, by the use of fluorescence 
imaging. Image decomposition methods widely used for the optical diagnoses, i.e. demarcation, are: ratio 
imaging [3,4], threshold based imaging, [2], as well as matrix factorization based methods [5]. Accuracy of 
first two groups of methods critically depends on the optimality of the threshold that up to some extent is 
always defined heuristically. Accuracy of the matrix factorization-based methods depends heavily on 
fulfillment of constraints imposed on spatial distributions of materials. Typical constraints are sparseness or 
statistical independence and they do not hold in a number of real world scenarios. To circumvent these 
difficulties 3D tensor factorization-based approach to unsupervised segmentation of the multi-spectral image 
has been proposed in [6]. Tensor of spatial distributions of the materials present in the image has been 
obtained by means non-negative tensor factorization (NTF) method that minimized α-divergence between 
original multi-spectral image tensor and its Tucker3 model [7,8]. Here, instead of performing computationally 
demanding NTF we propose a solution that estimates matrix of spectral profiles of the materials present in the 
image by means of clustering on 3-mode matricized version of the original multi-spectral image. It is 
presumed that materials present in the image do not occupy the same pixel footprint. Under such assumption 
it is enough to randomly select small number of pixel indexes and then estimate the matrix of spectral profiles 
applying some standard data clustering method, such as k-means for example, on the selected pixel set. 
Tensor of spatial distributions of the materials present in the image is then obtained through 3-mode 
multiplication of the original image tensor and pseudo-inverse of the estimated matrix of spectral profiles. 
This, tensor-based decomposition method is compared with matrix factorization methods on two experimental 
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RGB images: the first one with simple structure and known ground truth and the second one that is 
fluorescent image of the skin tumor (basal cell carcinoma).   

 
2. MATERIALS AND METHODS 

For the segmentation purpose multi-spectral image is often represented in a form of the linear mixture model 
(LMM)  
 
   X=AS         (1) 
 
where 3 1 2I I IR+

×∈X represents multi-spectral image consisting of I3 spectral bands and I1I2 pixels, 
3I JR+
×∈A represents matrix of spectral profiles of the materials present in the image (it is also known as 

mixing matrix) and 1 2J I IR+
×∈S represents matrix of the J materials present in the image. R+ is a real manifold 

with nonnegative elements. However, matrix factorization problem implied by linear mixture model (1) has 
infinitely many solutions unless additional constraints are imposed on model variables. This is due to the fact 
that representation (1) and representation X=ATT-1S are equivalent from the data matrix X point of view, 
whereas T is any invertible matrix. Thus, infinitely many pairs (A,S) can give rise to X. To achieve solutions 
which are meaningful, i.e. have physical interpretation, indeterminacies must be reduced to TT-1=PΛ, 
whereas P is permutation matrix and Λ is diagonal matrix. These are standard indeterminacies in blind source 
separation and can be achieved if either sparseness or statistical independence constraints are imposed on S. 
These constraints however do not hold in a number of real world scenarios. In this paper we exploit inherent 
3D tensorial structure of the multi-spectral image 1 2 3I I IR × ×

+∈X with elements
1 2 3i i ix where i1=1,...,I1, i2=1,...,I2 , 

i3=1, ...,I3. Each index is called way or mode and number of levels on one mode is called dimension of that 
mode. Multi-spectral image is a set of I3 spectral band images with the size of I1×I2 pixels. In this paper, and 
for the purpose of multi-spectral image decomposition, we adopt two widely used 3D tensor models: Tucker3 
model and PARAFAC/CANDECOMP model. The Tucker3 model is defined as 
 
    (1) (2) (3)

1 2 3
ˆ = × × ×X G A A A      (2) 

 
where 1 2 3J J JR × ×

+∈G is core tensor and { }3( )

1
n nI Jn

n
R ×
+ =

∈A are factors and ×n denotes n-mode product of a tensor 

with a matrix A(n). The result of  ( )n
n×G A is a tensor of the same order as G  but the size Jn replaced by In. 

PARAFAC model is a special case of Tucker3 model when G  is superdiagonal tensor with all elements zero 
except those for which all indices are the same. Compared to PARAFAC, Tucker3 model is more flexible due 
to the core tensor G  which allows interaction between a factor with any factor in the other modes. In 
PARAFAC model factors in different mode can only interact factor-wise. However, this restriction enables 
uniqueness of tensor factorization based the PARAFAC model within the permutation and scaling 
indeterminacies of the factors under very mild conditions and without need to impose any special constraints 
on them such as sparseness or statistical independence. Assuming J1=J2=J3=J, we can also express 3-mode 
flattened version of tensor X , this is matrix X(3), in terms of 3-mode flattened core tensor G , this yields 

matrix (3)
J JJR ×
+∈G , and array factors { }3( )

1

n
n=

A as [8]: 
 

   
T(3) (2) (1)

(3) (3) ⎡ ⎤≈ ⊗⎣ ⎦X A G A A       (3) 
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where ⊗ denotes Kronecker's product. Hence, from flattened version of the Tucker3 model (3) and LMM (1) 
matrix of spectral profiles and tensor of spatial distributions of the materials are identified as 
  (3)↔A A  
  ( )†(1) (2) (3)

1 2 3↔ × × = ×S G A A X A        (4) 

 
where 1 2I I JR × ×

+∈S  and ( )†(3)A  denotes Moore-Penrose pseudo-inverse of A(3). Second part of expression for 

S  is less sensitive to numerical errors than first part due to the fact that only one reconstructed quantity, array 
factor A(3), takes places into reconstruction of S .  Equivalence between mixing matrix A and array factor A(3) 
can be used for blind extraction of the tensor S  without need to actually execute 3D tensor factorization. 
Mixing matrix can be estimated from the flattened version X(3) of the image tensor X  by means of data 
clustering. Afterwards, tensor S  is obtained through 3-mode multiplication of the multi-spectral image tensor 
X and Moore-Penrose pseudo-inverse of A. Presuming sparseness between spatial distributions of the 
materials and using linear mixture model (3) the following approximation holds 
 
  { } { }(3) , 1 2(:, ) 1,..., , 1,...,j j ii s j J i I I≈ ∈ ∈X a     (4) 
 
i.e. pixels in the MSI, which are column vectors of data matrix X(3), coincide with some of the columns of A 
depending on which material is present at the current pixels. Thus, A can be estimated from X(3) employing 
some of standard data clustering algorithms, such as for example k-means algorithm [9]. It has been used in 
reported experiment. What is however of great importance for computational efficiency of proposed MSI 
decomposition scheme is that overall number of materials J is much less than overall number of pixels, i.e. 
J<<I1I2. Hence, only a small fraction of the overall number of pixels should be selected randomly to estimate 
A. Presuming that pixel indexes are uniformly distributed, minimal number of pixels to be selected, Nmin, is 
limited from below by the smallest area, O, occupied by some material: 
  

1 2
min

I IN
O

≥        (5) 

 
To estimate the number of materials J present in the MSI mixing vectors that lie in 3D on the unit semi-sphere 
are parameterized as, [10]: 
  

  T[cos( )sin( ) sin( )sin( ) cos( )]j j j j j jϕ θ ϕ θ θ=a ,     (6) 

where ϕm and θm represent azimuth and elevation angles respectively that are confined in the interval [0, π/2]. 
By assuming 1-dimensional concentration subspaces the clustering algorithm is outlined by the following 
steps, [10,11]: 
1) We remove all data points close to the origin for which applies: { } 1 2

2 1
( )

I I

t
t ε

=
≤x , where ε represents some 

predefined threshold. This corresponds to the case when all materials are close to zero. 

2) Normalize to unit 2l  norm remaining data points x(t), i.e., ( ) ( ) ( ){ }2 1

I

t
t t t

=
←x x x , where 1 2I I I≤ denotes 

number of data points that remained after elimination process. 
  
3) Calculate function f(a), where a is defined with (6): 
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1

( ),
exp

2

I

t

d t
f

σ=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

x a
a      (7) 

 

where ( ) ( )2( ), 1 ( )d t t= − ⋅x a x a  and ( )( )t ⋅x a  denotes inner product. Parameter σ in (7) is called 
dispersion. If set to sufficiently small value, in our experiments this turned out to be σ≈0.05, the value of the 
function f(a) will approximately equal the number of data points close to a. Thus, by varying mixing angles 
0≤ϕ,θ≤π/2 we effectively cluster data.  
 
4) Number of peaks of the function f(a) corresponds with the estimate of the number of materials J. Locations 

of the peaks correspond with the estimates of the mixing angles ( ){ }
1

ˆˆ ,
J

j j
j

ϕ θ
=

, i.e., mixing vectors { }
1

ˆ
J

j j=
a , 

where ˆ ja is given with (6). Hence, at the end of data clustering phase estimates of the number of materials J 
and mixing matrix A are obtained. Alternatively, k-means clustering algorithm can be used to estimate the 
mixing matrix. 
 

3. RESULTS 
Figure 1 left shows RGB image with simple and known ground truth. It contains three materials and has been 
used to validate accuracy of proposed MSI segmentation algorithm. Figure 1 right shows high-intensity 
fluorescent RGB image of the protoporphyrin IX accumulated in the skin tumor. This image has been used to 
extract binary spatial maps of the tumor and surrounding healthy tissue that were served as ground truth for 
evaluation of the receiver-operating-characteristic (ROC) curves for spatial maps of the tumor shown in 
Figures 4b to 4d. Top row of the Figure 2 shows spatial maps of materials extracted from RGB image shown 
in Figure 1 left by means of proposed algorithm that combines data clustering and 3-mode multiplication of 
the MSI tensor and inverse of the estimated mixing matrix. Bottom row of the Figure 2 shows spatial maps 
obtained by applying second order non-negative matrix factorization (SO NMF) algorithm, [12], to LMM (1) 
of the MSI. Since materials in the experimental RGB image do not overlap in spatial domain we can evaluate 
performance of the employed blind image decomposition methods via the correlation matrix defined as 
G=SST. For the perfect separation the correlation matrix should be diagonal. Hence, separation performance 
can be measured as deviation from diagonal matrix. To quantify decomposition quality numerically we 
compute the correlation index in dB scale as 
 

   2
10

, 1

10log
M

ij
i j
j i

CR g
=

≠

= − ∑       (6) 

where before calculating correlation matrix G rows of S are normalized to unit 2l norm. To make the 
extracted spatial maps of the materials visually comparable we have rescaled each extracted material to the 
interval [0, 1], wherein 0 represents the absence of the material and 1 represents the presence of the material. 
Hence, quality of the image decomposition is visible immediately. Average CR performance for results shown 
in top row of Figure 2 is 18.67 dB and for results shown in bottom row of Figure 2 is 4.26 dB. Figure 3 shows 
clustering function (7) in the mixing angles domain that is associated with Figure 1 left. Three peaks confirm 
existence of three materials in the experimental RGB image. 
 Figure 4a shows the weak-intensity RGB fluorescent image of the protoporphyrin IX accumulated in 
the skin tumor. It has been an input to blind decomposition methods. Decomposition results obtained by: 
tensor-based representation and clustering, matrix factorization based methods: SO NMF and dependent 
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component analysis (DCA) algorithm based on innovations representation, [13, 5], are respectively shown in 
Figures 4b to 4d. Corresponding receiver-operating-characteristic (ROC) curves are shown in Figure 5. 
Performance of proposed algorithm is better than SO NMF and DCA algorithms. Due the fact that clustering 
has been performed on 100 randomly selected pixels only, the computational efficiency was very high. All 
algorithms were implemented in MATLAB on a 2.4 GHz Intel Core 2 Quad Processor Q6600 based desktop 
computer with 4GB RAM. Computation times for clustering based NTF-like method, SO NMF algorithm and 
DCA algorithm are respectively given as: 0.2s, 30s and 3.6s. 
 

   
Fig. 1. left: RGB image with three materials; right: high-intensity fluorescent RGB image of the skin tumor. 

 

 
Fig. 2. Spatial maps of the tumor extracted from RGB image shown in Figure 1 left. Top row: tensor-based 
representation and clustering. Bottom row: SO NMF algorithm. Extracted spatial maps were rescaled to the 
interval [0, 1] and shown it in pseudo color scale, wherein dark blue color represents 0, i.e. the absence of the 
material, and dark red color represents 1, i.e. the presence of the material. 
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Figure 3. Clustering function associated with the experimental RGB image shown in Figure 1 left. Three 
peaks/clusters confirm existence of three materials present in the RGB image. 
 

 
Fig. 4. (a) Low-intensity fluorescent RGB image of the tumor. (b) to (d) Spatial maps of the tumor extracted 
from RGB image shown in Figure 4a by means of: b) tensor-based representation and clustering; c) SO NMF 
algorithm; d) DCA algorithm based on innovations representation. Extracted spatial maps were rescaled to the 
interval [0, 1] and shown it in pseudo color scale, wherein dark blue color represents 0, i.e. the absence of the 
tumor, and dark red color represents 1, i.e. the presence of the tumor. 
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Fig. 5. ROC curves calculated for spatial maps of the tumor shown in Figures 4b to 4d: blue '*' - innovations 
based DCA algorithm; green diamonds - SO NMF algorithm; red stars - tensor-based clustering algorithm. 

 
4. CONCLUSION 

Novel approach to blind decomposition of multi-spectral fluorescent image for tumor demarcation is 
presented. It exploits tensorial structure of the image. Matrix of spectral profiles of the materials present in the 
image is estimated by means of data clustering using matricized version of the image. 3D tensor of spatial 
distributions of the materials present in the image is obtained through 3-mode multiplication of the multi-
spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral 
image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-
based decomposition methods (such as non-negative matrix factorization and independent component 
analysis) are used. Due to presumed sparseness between the materials present in the image mixing matrix is 
identified by means of data clustering algorithm on a small number of randomly selected pixels. Superior 
performance of the tensor-based image decomposition over matrix factorization-based decompositions is 
demonstrated on experimental RGB image with known ground truth as well as on low-intensity multi-spectral 
fluorescent images of skin tumor.  
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