Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 472462

Random Forest-Based Classification of Heart Rate Variability Signals by Using Combinations of Linear and Nonlinear Features


Jović, Alan; Bogunović, Nikola
Random Forest-Based Classification of Heart Rate Variability Signals by Using Combinations of Linear and Nonlinear Features // IFMBE Proceedings Volume 29 / Bamidis, Panagiotis D. ; Pallikarakis, Nicolas (ur.).
Berlin: Springer, 2010. str. 29-32 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 472462 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Random Forest-Based Classification of Heart Rate Variability Signals by Using Combinations of Linear and Nonlinear Features

Autori
Jović, Alan ; Bogunović, Nikola

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
IFMBE Proceedings Volume 29 / Bamidis, Panagiotis D. ; Pallikarakis, Nicolas - Berlin : Springer, 2010, 29-32

ISBN
978-3-642-13038-0

Skup
XII Mediterranean Conference on Medical and Biological Engineering and Computing, MEDICON 2010

Mjesto i datum
Porto Carras, Grčka, 27.05.2010. - 30.05.2010

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
heart rate variability; ECG; linear features; nonlinear features; random forest

Sažetak
The goal of this paper is to assess various combinations of heart rate variability (HRV) features in successful classification of four different cardiac rhythms. The rhythms include: normal, congestive heart failure, supraventricular arrhythmia, and any arrhythmia. We approach the problem of automatic cardiac rhythm classification from HRV by employing several features’ schemes. The schemes are evaluated using the random forest classifier. We extracted a total of 78 linear and nonlinear features. Highest results were achieved for normal/supraventricular arrhythmia classification (93%). A feature scheme consisting of: time domain (SDNN, RMSSD, pNN20, pNN50, HTI), frequency domain (Total PSD, VLF, LF, HF, LF/HF), SD1/SD2 ratio, Fano factor, and Allan factor features demonstrated very high classification accuracy, comparable to the results for all extracted features. Results show that nonlinear features have only minor influence on overall classification accuracy.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Temeljne medicinske znanosti, Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Nikola Bogunović (autor)

Avatar Url Alan Jović (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Jović, Alan; Bogunović, Nikola
Random Forest-Based Classification of Heart Rate Variability Signals by Using Combinations of Linear and Nonlinear Features // IFMBE Proceedings Volume 29 / Bamidis, Panagiotis D. ; Pallikarakis, Nicolas (ur.).
Berlin: Springer, 2010. str. 29-32 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Jović, A. & Bogunović, N. (2010) Random Forest-Based Classification of Heart Rate Variability Signals by Using Combinations of Linear and Nonlinear Features. U: Bamidis, P. & Pallikarakis, N. (ur.)IFMBE Proceedings Volume 29.
@article{article, author = {Jovi\'{c}, Alan and Bogunovi\'{c}, Nikola}, year = {2010}, pages = {29-32}, keywords = {heart rate variability, ECG, linear features, nonlinear features, random forest}, isbn = {978-3-642-13038-0}, title = {Random Forest-Based Classification of Heart Rate Variability Signals by Using Combinations of Linear and Nonlinear Features}, keyword = {heart rate variability, ECG, linear features, nonlinear features, random forest}, publisher = {Springer}, publisherplace = {Porto Carras, Gr\v{c}ka} }
@article{article, author = {Jovi\'{c}, Alan and Bogunovi\'{c}, Nikola}, year = {2010}, pages = {29-32}, keywords = {heart rate variability, ECG, linear features, nonlinear features, random forest}, isbn = {978-3-642-13038-0}, title = {Random Forest-Based Classification of Heart Rate Variability Signals by Using Combinations of Linear and Nonlinear Features}, keyword = {heart rate variability, ECG, linear features, nonlinear features, random forest}, publisher = {Springer}, publisherplace = {Porto Carras, Gr\v{c}ka} }




Contrast
Increase Font
Decrease Font
Dyslexic Font