Pregled bibliografske jedinice broj: 472462
Random Forest-Based Classification of Heart Rate Variability Signals by Using Combinations of Linear and Nonlinear Features
Random Forest-Based Classification of Heart Rate Variability Signals by Using Combinations of Linear and Nonlinear Features // IFMBE Proceedings Volume 29 / Bamidis, Panagiotis D. ; Pallikarakis, Nicolas (ur.).
Berlin: Springer, 2010. str. 29-32 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 472462 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Random Forest-Based Classification of Heart Rate Variability Signals by Using Combinations of Linear and Nonlinear Features
Autori
Jović, Alan ; Bogunović, Nikola
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
IFMBE Proceedings Volume 29
/ Bamidis, Panagiotis D. ; Pallikarakis, Nicolas - Berlin : Springer, 2010, 29-32
ISBN
978-3-642-13038-0
Skup
XII Mediterranean Conference on Medical and Biological Engineering and Computing, MEDICON 2010
Mjesto i datum
Porto Carras, Grčka, 27.05.2010. - 30.05.2010
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
heart rate variability; ECG; linear features; nonlinear features; random forest
Sažetak
The goal of this paper is to assess various combinations of heart rate variability (HRV) features in successful classification of four different cardiac rhythms. The rhythms include: normal, congestive heart failure, supraventricular arrhythmia, and any arrhythmia. We approach the problem of automatic cardiac rhythm classification from HRV by employing several features’ schemes. The schemes are evaluated using the random forest classifier. We extracted a total of 78 linear and nonlinear features. Highest results were achieved for normal/supraventricular arrhythmia classification (93%). A feature scheme consisting of: time domain (SDNN, RMSSD, pNN20, pNN50, HTI), frequency domain (Total PSD, VLF, LF, HF, LF/HF), SD1/SD2 ratio, Fano factor, and Allan factor features demonstrated very high classification accuracy, comparable to the results for all extracted features. Results show that nonlinear features have only minor influence on overall classification accuracy.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Temeljne medicinske znanosti, Kliničke medicinske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb