Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 470414

Classification of Biological Signals Based on Nonlinear Features


Jović, Alan; Bogunović, Nikola
Classification of Biological Signals Based on Nonlinear Features // Proceedings of MELECON 2010, 15th IEEE Mediterranian Electromechanical Conference / Debono, Carl J. ; Kazmierkowski, Marian P. ; Micallef, Paul (ur.).
Valletta, 2010. str. 1340-1345 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 470414 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Classification of Biological Signals Based on Nonlinear Features

Autori
Jović, Alan ; Bogunović, Nikola

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of MELECON 2010, 15th IEEE Mediterranian Electromechanical Conference / Debono, Carl J. ; Kazmierkowski, Marian P. ; Micallef, Paul - Valletta, 2010, 1340-1345

ISBN
978-1-4244-5794-6

Skup
MELECON 2010

Mjesto i datum
Valletta, Malta, 25.04.2010. - 28.04.2010

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Nonlinear Dynamics; Nonlinear Features; Biological Signals; ECG; EEG; HRV

Sažetak
The problem of patient disorder classification and prediction from biological signals is addressed. We approach the problem from the perspective of nonlinear dynamical systems. Explored signals are ECG and EEG. We propose a combination of linear and nonlinear features for classification of four different types of heart rhythms through heart rate variability analysis. Classification accuracy is evaluated by three well-known machine learning algorithms: C4.5, support vector machines and random forest. The algorithms’ success rates are compared. The method of combining linear and nonlinear measures shows promising results in heart rate variability modeling. Random forest method has exhibited 99.6% classification accuracy.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Projekti:
036-0362980-1921 - Računalne okoline za sveprisutne raspodijeljene sustave (Srbljić, Siniša, MZO ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Nikola Bogunović (autor)

Avatar Url Alan Jović (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada

Citiraj ovu publikaciju:

Jović, Alan; Bogunović, Nikola
Classification of Biological Signals Based on Nonlinear Features // Proceedings of MELECON 2010, 15th IEEE Mediterranian Electromechanical Conference / Debono, Carl J. ; Kazmierkowski, Marian P. ; Micallef, Paul (ur.).
Valletta, 2010. str. 1340-1345 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Jović, A. & Bogunović, N. (2010) Classification of Biological Signals Based on Nonlinear Features. U: Debono, C., Kazmierkowski, M. & Micallef, P. (ur.)Proceedings of MELECON 2010, 15th IEEE Mediterranian Electromechanical Conference.
@article{article, author = {Jovi\'{c}, Alan and Bogunovi\'{c}, Nikola}, year = {2010}, pages = {1340-1345}, keywords = {Nonlinear Dynamics, Nonlinear Features, Biological Signals, ECG, EEG, HRV}, isbn = {978-1-4244-5794-6}, title = {Classification of Biological Signals Based on Nonlinear Features}, keyword = {Nonlinear Dynamics, Nonlinear Features, Biological Signals, ECG, EEG, HRV}, publisherplace = {Valletta, Malta} }
@article{article, author = {Jovi\'{c}, Alan and Bogunovi\'{c}, Nikola}, year = {2010}, pages = {1340-1345}, keywords = {Nonlinear Dynamics, Nonlinear Features, Biological Signals, ECG, EEG, HRV}, isbn = {978-1-4244-5794-6}, title = {Classification of Biological Signals Based on Nonlinear Features}, keyword = {Nonlinear Dynamics, Nonlinear Features, Biological Signals, ECG, EEG, HRV}, publisherplace = {Valletta, Malta} }




Contrast
Increase Font
Decrease Font
Dyslexic Font