Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 461272

Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images


Kopriva, Ivica; Peršin, Antun; Puizina-Ivić, Neira; Mirić, Lina
Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images // Journal of photochemistry and photobiology. B, Biology, 100 (2010), 1; 10-18 doi:10.1016/j.jphotobiol.2010.03.013 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 461272 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images

Autori
Kopriva, Ivica ; Peršin, Antun ; Puizina-Ivić, Neira ; Mirić, Lina

Izvornik
Journal of photochemistry and photobiology. B, Biology (1011-1344) 100 (2010), 1; 10-18

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
basal cell carcinoma ; photodynamic detection ; dependent component analysis ; tumor demarcation ; multi-spectral image.

Sažetak
This study was designed to demonstrate performance of the novel dependent component analysis (DCA)-based approach to robust demarcation of the basal cell carcinoma (BCC) through unsupervised decomposition of the red-green-blue (RGB) fluorescent image of the BCC. Robustness to intensity fluctuation is due to the scale invariance property of DCA algorithms, which exploit spectral diversity between the BCC and the surrounding tissue. DCA represents an extension of the independent component analysis (ICA) and is necessary in order to account for statistical dependence that is induced by spectral similarity between the BCC and surrounding tissue. This generates weak edges what represents a challenge for other segmentation methods as well. By comparative performance analysis with state-of-the-art image segmentation methods such as active contours (level set), K-means clustering, non-negative matrix factorization, ICA and ratio imaging we experimentally demonstrate good performance of DCA-based BCC demarcation in demanding scenario where intensity of the fluorescent image has been varied almost two-orders of magnitude.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Računarstvo, Kliničke medicinske znanosti



POVEZANOST RADA


Projekti:
098-0982903-2558 - Analiza višespektralih podataka (Kopriva, Ivica, MZOS ) ( CroRIS)
141-2180056-0481 - FOTODINAMSKA TERAPIJA U DERMATOLOŠKOJ ONKOLOGIJI (Puizina Ivić, Neira, MZOS ) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb,
KBC Split

Profili:

Avatar Url Antun Peršin (autor)

Avatar Url Lina Mirić (autor)

Avatar Url Neira Puizina Ivić (autor)

Avatar Url Ivica Kopriva (autor)

Citiraj ovu publikaciju:

Kopriva, Ivica; Peršin, Antun; Puizina-Ivić, Neira; Mirić, Lina
Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images // Journal of photochemistry and photobiology. B, Biology, 100 (2010), 1; 10-18 doi:10.1016/j.jphotobiol.2010.03.013 (međunarodna recenzija, članak, znanstveni)
Kopriva, I., Peršin, A., Puizina-Ivić, N. & Mirić, L. (2010) Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images. Journal of photochemistry and photobiology. B, Biology, 100 (1), 10-18 doi:10.1016/j.jphotobiol.2010.03.013.
@article{article, author = {Kopriva, Ivica and Per\v{s}in, Antun and Puizina-Ivi\'{c}, Neira and Miri\'{c}, Lina}, year = {2010}, pages = {10-18}, DOI = {10.1016/j.jphotobiol.2010.03.013}, keywords = {basal cell carcinoma, photodynamic detection, dependent component analysis, tumor demarcation, multi-spectral image.}, journal = {Journal of photochemistry and photobiology. B, Biology}, doi = {10.1016/j.jphotobiol.2010.03.013}, volume = {100}, number = {1}, issn = {1011-1344}, title = {Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images}, keyword = {basal cell carcinoma, photodynamic detection, dependent component analysis, tumor demarcation, multi-spectral image.} }
@article{article, author = {Kopriva, Ivica and Per\v{s}in, Antun and Puizina-Ivi\'{c}, Neira and Miri\'{c}, Lina}, year = {2010}, pages = {10-18}, DOI = {10.1016/j.jphotobiol.2010.03.013}, keywords = {basal cell carcinoma, photodynamic detection, dependent component analysis, tumor demarcation, multi-spectral image.}, journal = {Journal of photochemistry and photobiology. B, Biology}, doi = {10.1016/j.jphotobiol.2010.03.013}, volume = {100}, number = {1}, issn = {1011-1344}, title = {Robust demarcation of basal cell carcinoma by dependent component analysis-based segmentation of multi-spectral fluorescence images}, keyword = {basal cell carcinoma, photodynamic detection, dependent component analysis, tumor demarcation, multi-spectral image.} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font