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Department of Mathematics, University of Zagreb, Bijenička 30, Zagreb, Croatia
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Let g̃ be an affine Lie algebra of the type A(1)
� . We find a combi-

natorial basis of Feigin–Stoyanovsky’s type subspace W (Λ) given
in terms of difference and initial conditions. Linear independence
of the generating set is proved inductively by using coefficients of
intertwining operators. A basis of the standard g̃-module L(Λ) is
obtained as an “inductive limit” of the basis of W (Λ).
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1. Introduction

Vertex operator construction of affine Lie algebras has been used to prove and to give a
representation-theoretic interpretation of Rogers–Ramanujan-type combinatorial identities. This ap-
proach was initiated by J. Lepowsky and R. Wilson [19], and was continued in the works of Lepowsky,
M. Primc, A. Meurman and others (cf. [18,21]). An important part of this program was to find mono-
mial bases of standard modules for affine Lie algebras, or some of its subspaces. Knowledge of bases
was then used to calculate characters of these spaces, which gave the sum side in the Rogers–
Ramanujan-type partition identities.

Later, B. Feigin and A. Stoyanovsky considered what they called a principal subspace of a standard
s̃l(2,C)-module [10]. On one side, they described the dual of this subspace in terms of symmetric
polynomial forms, and on the other they realized this subspace geometrically. From these two real-
izations they recovered Rogers–Ramanujan and Gordon identities. Furthermore, by representing the
whole standard module as an inductive limit of Weyl-group translates of the principal subspace, they
obtained a combinatorial basis of the whole module in terms of “infinite monomials”.

G. Georgiev extended character formulas for principal subspaces obtained by Feigin and Stoy-
anovsky to a family of standard s̃l(� + 1,C)-modules [14]. He explicitly constructed combinatorial
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bases of these subspaces and in the proof of linear independence, he used intertwining operators
from [7]. More recently, S. Capparelli, J. Lepowsky and A. Milas laid out a program to interpret and
obtain Rogers–Ramanujan-type recursions in the setting of vertex operator algebras and affine Lie
algebras. They used intertwining operators to construct exact sequences between different principal
subspaces for s̃l(2,C) and in this way, obtained Rogers–Ramanujan and Rogers–Selberg recursions for
characters of these subspaces [5,6]. As a continuation of this program, C. Calinescu obtained Rogers–
Ramanujan-type recursions for some classes of standard modules for s̃l(� + 1,C) [1,2], and Calinescu,
Lepowsky and Milas provided new proofs of presentation theorems for principal subspaces for s̃l(2,C)

[3,4].
In parallel with these developments, Primc studied similar subspaces of standard modules for dif-

ferent affine Lie algebras [22,23], which he later called Feigin–Stoyanovsky’s type subspaces [24]. He
used bases of these subspaces to construct from them bases of the whole standard modules. For
s̃l(� + 1,C), these bases were parameterized by (k, � + 1)-admissible configurations, a combinatorial
objects that were introduced and further studied in [8] and [9]. In [24], Primc proved linear indepen-
dence of the spanning set by using Capparelli–Lepowsky–Milas’ approach via intertwining operators
and a description of the basis from [8]. These operators and a description of basis were used by
M. Jerković to obtain exact sequences of Feigin–Stoyanovsky’s type subspaces and recurrence relations
for the corresponding characters [15].

In our previous paper [26] we have used ideas of Georgiev, Capparelli, Lepowsky and Milas, and
of Primc to construct bases and prove linear independence of Feigin–Stoyanovsky’s type subspaces
for all basic modules for s̃l(� + 1,C). In this paper we generalize this result to higher-level standard
modules for s̃l(� + 1,C).

Let g = sl(�+1,C), a simple complex Lie algebra of the type A� , h ⊂ g its Cartan subalgebra, R the
corresponding root system. Then one has a root decomposition g = h + ∑

α∈R gα . Fix root vectors
xα ∈ gα . Let 〈·,·〉 be a normalized invariant bilinear form on g, and by the same symbol denote the
induced form on g∗ .

Let Π = {α1, . . . ,α�} be a basis of the root system R , and {ω1, . . . ,ω�} the corresponding set of
fundamental weights. We identify h and h∗ in the usual way and fix a fundamental weight ω = ωm .
Set

Γ = {
γ ∈ R

∣∣ 〈γ ,ω〉 = 1
} = {γi j | i = 1, . . . ,m; j = m, . . . , �},

where

γi j = αi + · · · + αm + · · · + α j .

Set

g±1 =
∑

α∈±Γ

gα, g0 = h ⊕
∑

〈α,ω〉=0

gα.

Then

g = g−1 ⊕ g0 ⊕ g1 (1)

is a Z-gradation of g. This decomposition is illustrated in Fig. 1; the subalgebra g0 consists of block-
diagonal matrices, while g1 and g−1 consist of matrices with non-zero entries only in the upper right
or lower-left block, respectively. We say that the set Γ is the set of colors. For γ ∈ Γ , we say that a
fixed basis element xγ ∈ gγ is of the color γ . The set of colors Γ can be pictured as a rectangle with
row indices 1, . . . ,m and column indices m, . . . , � (see Fig. 2).
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Fig. 1. The Z-gradation of g.

Fig. 2. The set of colors Γ .

Affine Lie algebra associated with g is g̃ = g⊗C[t, t−1]⊕Cc ⊕Cd, where c is the canonical central
element, and d is the degree operator. Elements xα(n) = xα ⊗ tn are fixed real root vectors. The Z-
gradation (1) of g induces the Z-gradation of g̃:

g̃ = g̃−1 ⊕ g̃0 ⊕ g̃1,

where g̃1 = g1 ⊗ C[t, t−1] is a commutative Lie subalgebra with a basis {xγ (−r) | r ∈ Z, γ ∈ Γ }.
Let Λ0, . . . ,Λ� be fundamental weights for g̃. For Λ = k0Λ0 + · · · + k�Λ� , ki ∈ Z, let L(Λ) be

a standard g̃-module of level k = k0 + · · · + k� , with a fixed highest weight vector vΛ . A Feigin–
Stojanovsky’s type subspace is a g̃1-submodule of L(Λ) generated with vΛ ,

W (Λ) = U (g̃1) · vΛ ⊂ L(Λ).

We find a basis of the Feigin–Stoyanovsky’s type subspace W (Λ) consisting of monomial vectors

{
xγ1(−r1) · · · xγn (−rn)vΛ

∣∣ n ∈ Z+; γ j ∈ Γ, r j ∈ N
}

whose monomial parts

xγ1(−r1) · · · xγn (−rn) (2)

satisfy certain combinatorial conditions.
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Fig. 3. Difference conditions.

We’ll say that an element xγ (−r) ∈ g̃1 is of a degree −r and of a color γ . We can look on mono-
mials (2) as colored partitions of N = −r1 − · · · − rn . Often we’ll use “exponential notation”

xγ1(−r1)
a

r1
γ1 · · · xγt (−rt)

a
rt
γt (3)

for monomials (2), where we assume that for different indices i, factors xγi (−ri) are distinct, and
ari
γi ∈ Z+ are corresponding exponents.

We’ll say that a monomial (3) satisfies difference conditions for L(Λ), if exponents of its factors
satisfy the following family of inequalities:

ar+1
i1 j1

+ · · · + ar+1
it jt

+ ar
it+1 jt+1

+ · · · + ar
is js

� k,

where 1 � i1 � · · · � it � it+1 � · · · � is � m, m � jt+1 � · · · � js � j1 � · · · � jt � � and ar
i j is an ex-

ponent of xγi j (−r). We can reformulate this by saying that for any configuration of colors of elements
of degree −r and −r − 1 of the type pictured on Fig. 3, the sum of corresponding exponents must be
less than k + 1.

Similarly, we’ll say that a monomial (3) satisfies initial conditions for L(Λ) if

a1
i1 j1

+ a1
i2 j2

+ · · · + a1
it jt

� k0 + k1 + · · · + ki1−1 + k jt+1 + · · · + k�,

where 1 � i1 � i2 � · · · � it � m, m � j1 � j2 � · · · � jt � � and a1
i j is an exponent of xγi j (−1).

The main result of this paper is

Theorem 14. Let L(Λ) be a standard g̃-module. Then the set of monomial vectors whose monomial part satis-
fies difference and initial conditions for L(Λ), is a basis of W (Λ).

Difference conditions on monomials are obtained by observing relations between fields xγ (z), γ ∈
Γ on L(Λ), while initial conditions are consequences of relations for some modules of lower level.

In the case k = 1, these conditions are equivalent to the conditions we have obtained in [26]. Since
a standard module of level k can be found inside a k-fold tensor product of modules of level 1, it is
natural to ask can a monomial (2) be factorized in such a way so that each factor satisfies difference
and initial conditions on the corresponding level 1 module. By combinatorial arguments, we show
that the answer to this question is affirmative. This enables us to use tensor products of coefficients of
intertwining operators that were constructed in [26] and to inductively prove the linear independence.
Following the approach of Primc [22,23] we construct a basis of the whole standard module L(Λ) as
an “inductive limit” of the basis of W (Λ).
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In the end, we briefly outline the course of this paper. In Sections 2 to 4 we introduce most of
the notation and definitions. In Sections 5 and 6 we briefly sketch the vertex operator construction
of basic modules. In Section 7 we recall from [26] the description of a monomial basis of W (Λ)

in the level 1 case. In Section 8 we describe a monomial basis of modules of level k in terms of
difference and initial conditions, and in Section 9 we rewrite these conditions in terms of conditions
for level 1 modules. In Section 10 we prove linear independence of the basis. In the last two sections
we construct a basis of L(Λ) and give a presentation theorem for W (Λ).

2. Affine Lie algebras

For � ∈ N, let

g = sl(� + 1,C),

a simple Lie algebra of the type A� . Let h ⊂ g be a Cartan subalgebra of g and R the corresponding
root system. Fix a basis Π = {α1, . . . ,α�} of R . Then we have the triangular decomposition g = n− ⊕
h ⊕ n+ . By R+ and R− we denote sets of positive and negative roots, and let θ be the maximal root.
Then 〈x, y〉 = tr xy is a normalized invariant bilinear form on g; via 〈·,·〉 we have an identification
h ∼= h∗ . For each root α fix a root vector xα ∈ gα .

Let {ω1, . . . ,ω�} be the set of fundamental weights of g, 〈ωi,α j〉 = δi j , i, j = 1, . . . , �. Denote by
Q = ∑�

i=1 Zαi the root lattice, and by P = ∑�
i=1 Zωi the weight lattice of g.

Denote by g̃ the associated affine Lie algebra

g̃ = g ⊗ C
[
t, t−1] ⊕ Cc ⊕ Cd.

Set x( j) = x ⊗ t j for x ∈ g, j ∈ Z. Commutation relations are then given by

[
x(i), y( j)

] = [x, y](i + j) + i〈x, y〉δi+ j,0c,

[c, g̃] = 0,[
d, x( j)

] = jx( j).

For an element x ∈ g form a formal series x(z) = ∑
n∈Z x(n)z−n−1.

Set he = h ⊕ Cc ⊕ Cd, ñ± = g ⊗ t±1
C[t±1] ⊕ n± . Then we also have the triangular decomposition

g̃ = ñ− ⊕ he ⊕ ñ+ .
Let Π̂ = {α0,α1, . . . ,α�} ⊂ (he)∗ be the set of simple roots of g̃. Usual extensions of bilinear forms

〈·,·〉 onto he and (he)∗ are denoted by the same symbols (we take 〈c,d〉 = 1). Define fundamental
weights Λi ∈ (he)∗ by 〈Λi,α j〉 = δi j and Λi(d) = 0, i, j = 0, . . . , �.

Let V be a highest weight module for affine Lie algebra g̃. Then V is generated by a highest weight
vector vΛ , for some Λ ∈ (he)∗ , such that

h · vΛ = Λ(h)vΛ, for h ∈ he,

x · vΛ = 0, for x ∈ ñ+.

Module V is a direct sum of weight subspaces Vμ = {v ∈ V | h · V = μ(h)v for h ∈ he}, μ ∈ (he)∗ .
Standard (i.e. integrable highest weight) g̃-module L(Λ) is the irreducible highest weight module

with dominant integral highest weight Λ, i.e.

Λ = k0Λ0 + k1Λ1 + · · · + k�Λ�,
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where ki ∈ Z+ , i = 0, . . . , �. The central element c acts on L(Λ) as multiplication by scalar

k = Λ(c) = k0 + k1 + · · · + k�,

which is called the level of the module L(Λ).

3. Feigin–Stoyanovsky’s type subspace

Fix a fundamental weight

ω = ωm,

for some m ∈ {1, . . . , �}. Set

Γ = {
α ∈ R

∣∣ 〈α,ω〉 = 1
}
.

Then we have the induced Z-gradation of g:

g = g−1 ⊕ g0 ⊕ g1, (4)

where

g0 = h ⊕
∑

〈α,ω〉=0

gα,

g±1 =
∑

α∈±Γ

gα.

Subalgebras g1 and g−1 are commutative, and g0 acts on them by adjoint action. The subalgebra g0
is reductive with semisimple part l0 = [g0,g0] of the type Am−1 × A�−m; as a root basis one can take
{α1, . . . ,αm−1} ∪ {αm+1, . . . ,α�}, and the center is equal to Cω.

Basis of the subalgebra g1 can be identified with the set of roots Γ . We call elements γ ∈ Γ colors
and the set Γ the set of colors. For ω = ωm , the set of colors is

Γ = {γi j | i = 1, . . . ,m; j = m, . . . , �}
where

γi j = αi + · · · + αm + · · · + α j . (5)

The maximal root θ is equal to γ1� . The set of colors Γ can be pictured as a rectangle with row-
indices 1, . . . ,m and column-indices m, . . . , �, like in Fig. 2.

Similarly, one also has the induced Z-gradation of affine Lie algebra g̃:

g̃0 = g0 ⊗ C
[
t, t−1] ⊕ Cc ⊕ Cd,

g̃±1 = g±1 ⊗ C
[
t, t−1],

g̃ = g̃−1 + g̃0 + g̃1.

As above, g̃−1 and g̃1 are commutative subalgebras, and g̃1 is a g̃0-module.
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For a dominant integral weight Λ, we define a Feigin–Stoyanovsky’s type subspace

W (Λ) = U (g̃1) · vΛ ⊂ L(Λ).

Our objective is to find a combinatorial basis of W (Λ). Set

g̃
+
1 = g̃1 ∩ ñ+, g̃

−
1 = g̃1 ∩ ñ−.

Then we have

W (Λ) = U
(
g̃
−
1

) · vΛ.

By Poincaré–Birkhoff–Witt theorem, we have a spanning set of W (Λ) consisting of monomial vectors

{
xγt (−rt) · · · xγ2(−r2)xγ1(−r1)vΛ

∣∣ t ∈ Z+; γ j ∈ Γ, r j ∈ N
}
. (6)

In the end, we say a few words about notation. Set

Γ̃ = {
xγ (−r)

∣∣ γ ∈ Γ, r ∈ Z
}
, Γ̃ − = {

xγ (−r)
∣∣ γ ∈ Γ, r ∈ N

}
.

Since the subalgebra g̃1 is commutative, we have U (g̃1) ∼= C[Γ̃ ] and U (g̃−
1 ) ∼= C[Γ̃ −]. Hence elements

of the spanning set (6) can be identified with monomials from C[Γ̃ −]. Because of this we often refer
to elements of Γ̃ − as to variables, elements or factors of a monomial.

Monomials from C[Γ̃ ] can be identified with colored partitions. Let π : Γ̃ → Z+ be a colored par-
tition (cf. [22, Section 3]). The corresponding monomial x(π) ∈ C[Γ̃ ] is

x(π) = xγt (−rt)
π(xγt (−rt )) · · · xγ1(−r1)

π(xγ1 (−r1)).

From this identification we take notation x(π) for the monomials from C[Γ̃ ]. It will be convenient
to define some new monomials by using this identification. Also, our combinatorial conditions for the
basis elements will be written in terms of exponents π(xγ (−r)), which gives a parametrization of the
basis by a generalization of the notion of (k, � + 1)-admissible configurations from [8].

4. Order on the set of monomials

We introduce a linear order on the set of monomials.
On the weight and root lattice, we have an order ≺ defined in the standard way: for μ,ν ∈ P set

μ ≺ ν if μ − ν is an integral linear combination of simple roots αi , i = 1, . . . , �, with non-negative
coefficients.

Next, we define a linear order < on the set of colors Γ which is an extension of the order ≺. For
elements of Γ , γi′ j′ ≺ γi j is equivalent to saying that i′ � i and j′ � j. The order < on Γ is defined
in the following way:

γi′ j′ < γi j if

{
i′ > i or

i′ = i, j′ < j.

It is clear that this is a linear order on the set of colors.
On the set of variables Γ̃ we define a linear order < so that we compare degrees first, and then

colors of variables:
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xα(−r) < xβ(−r′) if

{−r < −r′ or

r = r′ and α < β.

We assume that the variables in monomials from C[Γ̃ ] are sorted ascendingly from left to right.
An order < on the set of monomials is defined as a lexicographic order, where we compare variables
from right to left (from the greatest to the lowest one). If x(π) and x(π ′) are two monomials,

x(π) = xγt (−rt)xγt−1(−tt−1) · · · xγ2(−r2)xγ1(−r1),

x(π ′) = xγ ′
s

(−r′
s

)
xγ ′

s−1

(−r′
s−1

) · · · xγ ′
2

(−r′
2

)
xγ ′

1

(−r′
1

)
,

then x(π) < x(π ′) if there exist i0 ∈ N so that xγi (−ri) = xγ ′
i
(−r′

i), for all i < i0, and either i0 =
t + 1 � s or xγi0

(−ri0 ) < xγ ′
i0
(−r′

i0
).

This monomial order is compatible with multiplication:

Proposition 1. (See [26].) Let

x(π1) � x(μ1) and x(π2) � x(μ2).

Then

x(π1)x(π2) � x(μ1)x(μ2),

and if one of the first two inequalities is strict, then the last one is also strict.

For a monomial x(π) ∈ C[Γ̃ ], we also define a degree and a shape of x(π). A degree of a monomial
is equal to the sum of degrees of its variables. For

x(π) = xγt (−rt)xγt−1(−rt−1) · · · xγ2(−r2)xγ1(−r1),

its degree is equal to −r1 − r2 − · · · − rt . A shape of a monomial is obtained from its colored partition
by forgetting colors and considering only degrees of factors. More precisely, for a monomial x(π) and
its partition π : {xγ (−r) | γ ∈ Γ, r ∈ Z} → Z+ , the corresponding shape will be

sπ : Z → Z+,

sπ (r) =
∑
γ ∈Γ

π
(
xγ (−r)

)
.

A linear order can also be defined on the set of shapes; we’ll say that sπ < sπ ′ if there exists r0 ∈ Z

such that sπ (r) = sπ ′(r) for r < r0 and sπ (r0) < sπ ′(r0).
In the end, for the sake of simplicity, we introduce the following notation:

xij(−r) = xγi j (−r),

for γi j ∈ Γ , r ∈ N.
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5. Vertex operator construction

We use the vertex operator algebra construction of basic g̃-modules (i.e. standard g̃-modules of
level 1) from [12,25]. We’ll sketch this construction here, details can be found in [7,13] or [17].

Consider tensor products

V P = M(1) ⊗ C[P ],
V Q = M(1) ⊗ C[Q ];

where M(1) is the Fock space for the Heisenberg subalgebra ĥZ = ∑
n∈Z\{0} h ⊗ tn ⊕ Cc, and C[P ]

and C[Q ] are group algebras of the weight and root lattice with bases {eλ | λ ∈ P }, and {eα | α ∈ Q },
respectively. We identify group elements eλ = 1 ⊗ eλ ∈ V P .

Space V Q has a structure of vertex operator algebra and V P is a module for this algebra. Vertex
operators corresponding to the group elements eλ ∈ C[P ] are defined as follows:

Y
(
eλ, z

) = E−(−λ, z)E+(−λ, z) ⊗ eλzλε(λ, ·), (7)

where eλ = 1 ⊗ eλ is a multiplication operator, ελ = 1 ⊗ ε(λ, ·) and ε(·,·) is a 2-cocycle (cf. [7]),
operator zλ = 1 ⊗ zλ , zλ · eμ = eμz〈λ,μ〉 and

E±(λ, z) = exp

( ∑
m�1

λ(±m)z∓m/±m

)
,

for λ ∈ P .
By using vertex operators, one can define the structure of g̃-module on V P . For α ∈ R set

xα(z) = Y
(
eα, z

)
,

for a properly chosen root vector xα . Heisenberg subalgebra acts on the Fock space M(1) and c acts as
identity. In this way V Q and V Q eω j , j = 1, . . . , � become standard g̃-modules of level 1 with highest
weight vectors v0 = 1 and v j = eω j , j = 1, . . . , �,

L(Λ0) ∼= V Q and L(Λ j) ∼= V Q eω j , j = 1, . . . , �,

and

V P ∼= L(Λ0) ⊕ L(Λ1) ⊕ · · · ⊕ L(Λ�).

We will also be using intertwining operators

Y
(
eλ, z

) = Y
(
eλ, z

)
eiπλc(·, λ),

for λ ∈ P , where c(·,·) is a commutator map (cf. [7]). If λ + ωi ≡ ω j mod Q , then

Y
(
eλ, z

) : L(Λi) → L(Λ j){z}, (8)

where L(Λ j){z} is a space of formal series with coefficients in L(Λ j). Here, for convenience, we set
ω0 = 0. Also, for a suitable choice of μ ∈ P , the operators Y(eμ, z) will commute with g̃1 (cf. [26,
Section 8]).
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Standard modules of level k > 1 can be viewed, by the complete reducibility, as submodules of
tensor products of basic modules;

L(Λ) ⊂ L(Λ0)
⊗k0 ⊗ · · · ⊗ L(Λ�)

⊗k� ,

if Λ = k0Λ0 + k1Λ1 + · · · + k�Λ� , k = k0 + k1 + · · · + k� . Highest weight vector of L(Λ) is

vΛ = v⊗k0
0 ⊗ · · · ⊗ v⊗k�

� .

This all can be imbedded into V ⊗k
P . One can also define vertex operators corresponding to elements

u1 ⊗ · · · ⊗ uk ∈ V ⊗k
P

as tensor products of vertex operators on the appropriate tensor factors:

Y (u1 ⊗ · · · ⊗ uk, z) = Y (u1, z) ⊗ · · · ⊗ Y (uk, z).

Then V ⊗k
Q = L(Λ0)

⊗k becomes vertex operator algebra with the vacuum vector 1 = 1 ⊗ · · · ⊗ 1, and

V ⊗k
P with its subspaces L(Λ0)

⊗k0 ⊗ · · · ⊗ L(Λ�)
⊗k� become modules for this algebra [7,11].

6. Operator e(ω)

For λ ∈ P , eλ denotes multiplication operator 1 ⊗ eλ in V P = M(1) ⊗ C[P ]. Set

e(λ) = eλε(·, λ), e(λ) : V P → V P .

Clearly, e(λ) is a linear bijection. Its restrictions on basic modules are bijections from one basic module
L(Λi) onto another basic module L(Λi′). From the definition of vertex operators Y (eα, z) for α ∈ R
one gets the following commutation relation

Y
(
eα, z

)
e(λ) = e(λ)z〈λ,α〉Y

(
eα, z

)
,

or, in terms of components,

xα(r)e(λ) = e(λ)xα

(
r + 〈λ,α〉), r ∈ Z. (9)

For standard modules of level k > 1, one defines operator e(λ) on the tensor product of basic
modules as a tensor product of the appropriate operators

e(λ) = e(λ) ⊗ · · · ⊗ e(λ) :
k⊗

j=1

L(Λi j ) →
k⊗

j=1

L(Λi′j ).

Operator e(λ) is again a linear bijection, and relation (9) still holds.
For λ = ω and γ ∈ Γ , the relation (9) becomes

xγ (r)e(ω) = e(ω)xγ (r + 1).
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Fig. 4. Difference conditions – the level 1 case.

More generally, for a monomial x(π) ∈ C[Γ̃ ],

x(π)e(ω) = e(ω)x
(
π+)

, (10)

where x(π+) ∈ C[Γ̃ ] denotes a monomial corresponding to partition

π+(
xγ (r + 1)

) = π
(
xγ (r)

)
. (11)

7. The case k = 1

Here we briefly recall the main results from [26] concerning a basis of a Feigin–Stoyanovsky’s type
subspace of the standard module L(Λi). It is described in terms of difference and initial conditions.

A monomial x(π) satisfies difference conditions for L(Λi) if the following holds:

• if x(π) contains elements xpq(−r) and xp′q′ (−r), and γp′q′ � γpq , then p′ > p and q′ < q,
• if x(π) contains elements xpq(−r) and xp′q′ (−r − 1), then p′ > p or q′ < q.

From this we conclude that colors of elements of the same degree −r inside x(π) make a de-
scending sequence; appropriate row-indices strictly increase, while column-indices strictly decrease.
Colors of elements of degree −r − 1 also form a decreasing sequence which is placed below or on the
left of the minimal color of elements of degree −r (see Fig. 4).

A monomial x(π) satisfies initial conditions for L(Λi) if it doesn’t contain any element xpq(−1) ∈
g̃1 such that xpq(−1)vi = 0. In the case 0 � i � m, xpq(−1)vi = 0 if p � i; in the case m � i � �,
xpq(−1)vi = 0 if q � i. Hence, initial conditions imply that the sequence of colors of elements of
degree −1 in a monomial x(π) lies below the i-th row (if 0 � i � m), or on the left of the i-th
column (for m � i � �); see Fig. 5.

8. Difference and initial conditions

8.1. Relations

As in the case k = 1 (cf. [26]) we first find relations between fields xγ (z), γ ∈ Γ on the standard
module L(Λ). By equating coefficients of powers of z in these relations, we get relations between
monomials. Then we then identify the minimal monomial among these, the so called leading term of
a relation, and exclude from the spanning set all monomials that contain leading terms. Difference
conditions combinatorially describe such monomials in terms of exponentials of factors xpq(r) ∈ Γ̃ − .
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Fig. 5. Initial conditions – the level 1 case.

To obtain relations, we start from a consequence of Frenkel–Kac–Segal vertex operator formula for
L(Λ)

xθ (z)k+1 = 0. (12)

Since g̃1 is commutative, the product of fields on the left side is a vertex operator corresponding to
the element xθ (−1)k+11 in L(kΛ0) ⊂ L(Λ0)

⊗k , and the relation above is equivalent to

xθ (−1)k+11 = 0

(cf. [16,20,21]; see also [17]).
By acting on this relation with y ∈ l0, one gets

0 = y · xθ (−1)k+11 = [
y, xθ (−1)k+1]1 + xθ (−1)k+1 y · 1

= [
y, xθ (−1)k+1]1. (13)

A commutator [y, xθ (−1)k+1] is again an element of S(g1 ⊗ t−1) ⊂ U (g̃1) and hence from the above
equality we obtain another relation between fields xγ (z), γ ∈ Γ .

Thus we have to study a subrepresentation V ⊂ S(g1 ⊗ t−1) of l0 generated by a singular vector
xθ (−1)k+1 = x1�(−1)k+1,

V = U (l0) · x1�(−1)k+1 ⊂ S
(
g1 ⊗ t−1) ⊂ U (g̃1). (14)

The action of l0 is defined by the adjoint action of l0 on g̃1 (i.e. on g1).
Generally, the algebra l0 is a direct sum of two simple subalgebras,

l0 = l′0 ⊕ l′′0,

with the first one being of type Am−1, and the second one of type A�−m . A basis of g can be chosen
such that the adjoint action of l0 is given by:

[x−αi , xγpq ] = δipxγp+1,q ,

[xαi , xγpq ] = δi,p−1xγp−1,q , (15)
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if i = 1, . . . ,m − 1,

[x−αi , xγpq ] = δiqxγp,q−1 ,

[xαi , xγpq ] = δi,q+1xγp,q+1 , (16)

if i = m + 1, . . . , �. One can say that the first subalgebra l′0 acts by changing the row-index, and the
second subalgebra l′′0 by changing the column-index of elements xγ ,γ ∈ Γ.

From (5) we immediately see that θ = γ1� = ω1 + ω� (cf. [27]), and hence the vector x1�(−1)k+1

is the highest weight vector in V of the weight (k + 1)θ = (k + 1)(ω1 +ω�) for l0. The highest weight
representation of l0 can be obtained in another way, by taking tensor product of highest weight
representations of its simple subalgebras. Let V 1 be a highest weight representation of l′0 with the
highest weight (k + 1)ω1. It can be realized as the subspace of homogeneous polynomials of degree
k + 1 in m variables,

V 1 = Sk+1(x1, . . . , xm) ⊂ S(x1, . . . , xm).

The action of l′0 is given for generators x−αi , xαi ; i = 1, . . . ,m − 1, by

x−αi �→ xi+1
∂

∂xi
, xαi �→ xi

∂

∂xi+1
.

Similarly, let V 2 a highest weight representation of l′′0 with the highest weight (k + 1)ω� . It can be
realized as the space of homogeneous polynomials of degree k + 1 in � − m + 1 variables

V 2 = Sk+1(xm, . . . , x�) ⊂ S(xm, . . . , x�),

where the action is defined for generators x−αi , xαi ; i = m + 1, . . . , �, by

x−αi �→ xi−1
∂

∂xi
, xαi �→ xi

∂

∂xi−1
.

Then

V ∼= V 1 ⊗ V 2.

A highest weight vector in V 1 is xk+1
1 . From the character formula (cf. [27]) one sees that mono-

mials

xi1 xi2 · · · xik+1 , 1 � i1 � i2 � · · · � ik+1 � m,

constitute a basis of V 1 made of weight vectors. Similarly, a monomial xk+1
� is a highest weight vector

of V 2, and the basis constitutes of monomials

x j1 x j2 · · · x jk+1 , � � j1 � j2 � · · · � jk+1 � m.

Hence, the basis of V 1 ⊗ V 2 is constituted by tensor products

xi1 xi2 · · · xik+1 ⊗ x j1 x j2 · · · x jk+1 ,
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for 1 � i1 � i2 � · · · � ik+1 � m and m � j1 � j2 � · · · � jk+1 � �. The goal is to determine the corre-
sponding basis of V which, in turn, will give us relations on L(Λ).

Denote by p = (p1, . . . , pk+1), q = (q1, . . . ,qk+1) sequences of k + 1 elements from {1, . . . , �}, and
by p = {p1, . . . , pk+1}, q = {q1, . . . ,qk+1} the corresponding multisets.

Lemma 2. The basis of V is parameterized by (k + 1)-tuples 1 � i1 � i2 � · · · � ik+1 � m and m � j1 � j2 �
· · · � jk+1 � �; the corresponding weight vectors are

∑
p={i1,...,ik+1}
q={ j1,..., jk+1}

Cpqxp1q1(−1)xp2q2(−1) · · · xpk+1qk+1(−1), (17)

where coefficients Cpq are positive integers.

Proof. One can first act on the highest weight vectors by the x−αi ’s, i ∈ {m + 1, . . . , �}, that would
send xk+1

1 ⊗ xk+1
� ∈ V 1 ⊗ V 2 to

xk+1
1 ⊗ x j1 x j2 · · · x jk+1 . (18)

Acting with the same x−αi ’s on the corresponding highest weight vector xk+1
1� (−1) ∈ V will give

x1 j1(−1)x1 j2(−1) · · · x1 jk+1(−1), (19)

or, more precisely, some multiple of that monomial with positive integer coefficient. Next, we act on
vectors (18) and (19) with x−αik+1−1 x−αik+1−2 · · · x−α1 ; on one side, from (18), we get

xk
1xik+1 ⊗ x j1 x j2 · · · x jk+1 ∈ V 1 ⊗ V 2,

and on the other, from (19), we obtain

k+1∑
r=1

x1 j1(−1) · · · xik+1 jr (−1) · · · x1 jk+1(−1) ∈ V .

In the second vector for every occurrence of index 1 at the first place in (19), we have a monomial
where this index was changed to ik+1. Monomials

x1 j1(−1) · · · x1 jr−1(−1)x1 jr+1(−1) · · · x1 jk+1(−1)

correspond to vectors

xk
1 ⊗ x j1 · · · x jr−1 x jr+1 · · · x jk+1

from the appropriate module V ′
1 ⊗ V ′

2 of the highest weight kθ . Next, we act on the vector and
monomials above by x−αik−1 x−αik−2 · · · x−α1 that would change one occurrence of index 1 into ik .
Since x−αs · xik+1 j = 0 for s < ik+1, the proof follows by induction on k. �

Like in (13), from (12) and (17) we obtain
∑

p={i1,...,ik+1}
q={ j1,..., jk+1}

Cpqxp1q1(−1)xp2q2(−1) · · · xpk+1qk+1(−1)1 = 0 (20)

in L(kΛ0) ⊂ L(Λ0)
⊗k.
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From this we obtain the following family of relations between corresponding vertex operators on
L(Λ):

Proposition 3. For 1 � i1 � i2 � · · · � ik+1 � m and m � j1 � j2 � · · · � jk+1 � �, we have

∑
p={i1,...,ik+1}
q={ j1,..., jk+1}

Cpqxp1q1(z)xp2q2(z) · · · xpk+1qk+1(z) = 0, (21)

where Cpq ∈ N.

8.2. Leading terms

Fix one choice 1 � i1 � i2 � · · · � ik+1 � m and m � j1 � j2 � · · · � jk+1 � � and observe the
corresponding relation (21). For every n � k + 1, coefficients of powers zn−k−1 are infinite sums of
monomials:

∑
r1+···+rk+1=n

p=i,q=j

C pqxp1q1(−r1)xp2q2(−r2) · · · xpk+1qk+1(−rk+1) = 0. (22)

In each such sum, we identify the minimal monomial in the lexicographical order defined in Section 4.
We call this monomial the leading term of the relation. Because of the minimality, every monomial that
contains a leading term can be excluded from the spanning set (cf. Proposition 4).

All monomials that appear in (22) are of the same length k + 1 and of the same total degree −n.
Hence we can consider only those monomials that are of the minimal shape, i.e. the ones in which
degrees of factors differ for at most 1. The others will be greater than these.

Consider first the case n = r(k + 1), for some r ∈ N. In this case, monomials of minimal shape will
have all k + 1 factors of the same degree −r. So we need to find the minimal possible monomial

xp1q1(−r)xp2q2(−r) · · · xpk+1qk+1(−r)

such that {p1, . . . , pk+1} = {i1, . . . , ik+1} and {q1, . . . ,qk+1} = { j1, . . . , jk+1}. Since all factors are of the
same degree, the minimal monomial will be the one that has the minimal configuration of colors
of its factors. If we assume that factors of a monomial are sorted ascendingly from left to right, this
means that we have to choose the smallest possible color γpk+1qk+1 (the greatest color in a monomial),
next the smallest possible color γpkqk , and so on.

Since the row and column-indexes of colors of monomial are fixed ({i1, . . . , ik+1} and { j1, . . . , jk+1},
resp.) the greatest color will lie in the i1-th row, and the smallest possible of them is γi1 j1 . The sec-
ond greatest color lies in the i2-th row, the smallest possible being γi2 j2 .1 We proceed in the same
manner, and obtain a monomial

xi1 j1(−r) · · · xik jk (−r)xik+1 jk+1(−r). (23)

Consider now the configuration of the colors in (23). Each color γit+1 jt+1 is placed on the right of,
or below, or diagonally on the right and below color γit jt (see Fig. 6). Consequently, we conclude that
colors of the leading term lie on a diagonal path as pictured in Fig. 7.

1 If i1 = i2, then γi1 j1 � γi2 j2 , but this shouldn’t concern us, because in this way we’ll certainly obtain the smallest possible
choice of colors from the i1-th row.
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Fig. 6. Configuration of colors of leading terms.

Fig. 7. Configuration of colors of leading terms.

Finally, we can describe the leading terms via exponents of factors. Let ar
i j = π(xij(−r)) be an

exponent of xij(−r) in x(π). Then the leading terms correspond to solutions of equations

ar
i1 j1

+ ar
i2 j2

+ · · · + ar
is js

= k + 1, (24)

where 1 � i1 � i2 � · · · � is � m and m � j1 � j2 � · · · � js � m. Since exponents ar
i j count the

number of occurrences of the factor xij(−r) in x(π), we now don’t allow repetitions of colors,
(iν, jν) �= (iν+1 jν+1).

Consider next the case n = r(k + 1) + q. For convenience, we change the setting a bit, so that
1 � i1 � · · · � iq � iq+1 � · · · � ik+1 � m, m � jq+1 � · · · � jk+1 � j1 � · · · � jq � �. Monomials of
minimal shape in this case are built of q factors of degree −r − 1 and k − q + 1 factors of degree −r.
Since factors of degree −r are greater than factors of degree −r − 1, the leading term of (23) can
be obtained so that first one chooses the smallest possible (−r)-part of a monomial, and then the
smallest possible (−r − 1)-part. Hence factors of degree −r are placed in the last k − q + 1 rows and
the first k − q + 1 columns, and in the rest are placed factors of degree −r − 1:

(−r)-part � (iq+1, iq+2, . . . , ik+1), ( jq+1, jq+2, . . . , jk+1),

(−r − 1)-part � (i1, i2, . . . , iq), ( j1, j2, . . . , jq).

We proceed as in the first case; the colors of elements of the same degree will lie on a diagonal path
as before, and the configuration of colors is of the type pictured on Fig. 3.
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In terms of exponents, this leading terms correspond to solutions of equations

ar+1
i1 j1

+ · · · + ar+1
it jt

+ ar
it+1 jt+1

+ · · · + ar
is js

= k + 1, (25)

where 1 � i1 � · · · � it � it+1 � · · · � is � m and m � jt+1 � · · · � js � j1 � · · · � jt � �, and ar
i j =

π(xij(−r)), for all r ∈ N. Again, in this notation, we assume that (iν, jν) �= (iν+1 jν+1) for ν �= t .
In the end, observe that solutions of (24) are also solutions of some equation of the type (25),

simply take t = 1 and i1 = 1, j1 = �. Hence we can say that all leading terms correspond to solutions
of Eqs. (25).

We’ll say that a monomial x(π) ∈ C[Γ̃ −] satisfies difference conditions for L(Λ), or shortly, that
x(π) satisfies DC for L(Λ), if it doesn’t contain a leading term of relations (22). More precisely, x(π)

satisfies difference conditions if

ar+1
i1 j1

+ · · · + ar+1
it jt

+ ar
it+1 jt+1

+ · · · + ar
is js

� k, (26)

where 1 � i1 � · · · � it � it+1 � · · · � is � m and m � jt+1 � · · · � js � j1 � · · · � jt � �, ar
i j =

π(xij(−r)), for all r ∈ N and (iν, jν) �= (iν+1 jν+1) for ν �= t .
The following proposition follows by induction from Proposition 1 and the minimality of leading

terms.

Proposition 4. The set

{
x(π)vΛ

∣∣ x(π) satisfies DC
}

(27)

spans W (Λ).

8.3. Initial conditions

By difference conditions, in a monomial x(π), factors of degree −r, for r > 1, are restricted by
factors of degree −r − 1 and −r + 1. Exceptions are factors of degree −1, which are restricted only
“from below”, by factors of degree −2. Initial conditions will play the part of restrictions “from above”
on factors of degree −1.

In the case k = 1 there were no relations between monomials consisting of factors of degree −1,
other than those already used for difference conditions. Thus, the initial conditions demanded only
that there are no (−1)-factors that annihilate highest weight vector. However, when the level k > 1,
generally, there are other relations between such monomials. These relations amount to relations for
difference conditions but for modules of level lesser than k.

We’ll say that a monomial x(π) ∈ C[Γ̃ −] satisfies initial conditions for L(Λ), or shortly, that x(π)

satisfies IC for L(Λ), if

a1
i1 j1

+ a1
i2 j2

+ · · · + a1
it jt

� k0 + k1 + · · · + kit−1 + k j1+1 + · · · + k�, (28)

where 1 � i1 � i2 � · · · � it � m, m � j1 � j2 � · · · � jt � �, (iν, jν) �= (iν+1, jν+1) and a1
i j =

π(xij(−1)). The sum on the right side of inequality is the sum of ki ’s such that at least one xiν jν (−1)

doesn’t act as 0 on L(Λi) (cf. Section 7).

Proposition 5. The set

{
x(π)vΛ

∣∣ x(π) satisfies IC and DC
}

spans W (Λ).
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Proof. Assume that x(π) doesn’t satisfy some inequality of the type (28) and set d = k0 + k1 + · · · +
kit−1 + k j1+1 + · · · + k� + 1. Then x(π) contains a monomial x(π ′) consisting only of factors of degree
−1, such that it also doesn’t satisfy that inequality. Furthermore, one can assume that the length of
x(π ′) is equal to d. We’ll show that we can find monomials x(π ′

1), . . . , x(π ′
s) such that x(π ′) < x(π ′

i ),
x(π ′

i )’s are of the same degree as x(π ′) and

x(π ′)vΛ = C1x
(
π ′

1

)
vΛ + · · · + Csx

(
π ′

s

)
vΛ,

for some Ci ∈ C. Upon multiplying them with the rest of x(π), we obtain monomials x(πi) of the
same degree as x(π), such that x(π) < x(πi) (cf. Proposition 1) and

x(π)vΛ = C1x(π1)vΛ + · · · + Csx(πs)vΛ,

for some Ci ∈ C. Let

x(π ′) = xi1 j1(−1) · · · xid jd (−1),

1 � i1 � i2 � · · · � id � m, m � j1 � j2 � · · · � jd � �. There are 2 possibilities: d = k + 1 or d � k.
If the first case, d = k + 1, the initial condition is equivalent to difference condition and the state-
ment follows from relation (22), Proposition 1 and the minimality of leading terms. In the second
case, d � k, there exists at least one vi in the tensor product vΛ = v⊗k0

0 ⊗ v⊗k1
1 ⊗ · · · ⊗ v⊗k�

� that is
annihilated by all factors of x(π ′), and ki > 0. Set

Λ′ =
id−1∑
i=0

kiΛi +
�∑

i= j1+1

kiΛi,

Λ′′ =
j1∑

i=id

kiΛi = Λ − Λ′.

Denote by vΛ′ and vΛ′′ highest weight vectors of standard modules L(Λ′) and L(Λ′′). Then, by the
complete reducibility,

L(Λ) ⊂ L(Λ′) ⊗ L(Λ′′),

vΛ = vΛ′ ⊗ vΛ′′ .

Since all factors of x(π ′) annihilate vΛ′′ (cf. Section 7), we have

x(π ′)vΛ = (
x(π ′)vΛ′

) ⊗ vΛ′′ .

Note that L(Λ′) is a module of level k′ < k and d = k′ +1. From relations (22) for the module L(Λ′) we
obtain monomials x(π ′

1), . . . , x(π ′
s) of the same length and degree, such that x(π ′)vΛ′ = C1x(π ′

1)vΛ′ +
· · · + Csx(π ′

s)vΛ′ , Ci ∈ C, and x(π ′) < x(π ′
i ). Also from these relations, we see that colors of factors of

monomials x(π ′
i ) lie in the same rows and columns as colors of x(π ′). Hence, all factors of x(π ′

i ) also
act as 0 on vΛ′′ . Consequently,

x(π ′)vΛ = C1x
(
π ′

1

)
vΛ + · · · + Csx

(
π ′

s

)
vΛ. �
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9. A combinatorial reduction to the level 1 case

Difference and initial conditions for modules of level k > 1 can be restated in terms of difference
and initial conditions for modules of level 1. We are going to prove

Theorem 6. Let L(Λ) be a standard module of level k with the highest weight vector vΛ = vi1 ⊗ · · · ⊗ vik ,
where vi j are the highest weight vectors of corresponding modules L(Λi j ) of level 1. If a monomial x(π) ∈
C[Γ̃ −] satisfies difference and initial conditions on L(Λ), then there exists a factorization

x(π) = x
(
π(1)

) · · · x
(
π(k)

)

such that x(π( j)) satisfies difference and initial conditions on L(Λi j ).

Proposition 9 will imply the converse of the theorem. Hence, we’ll have an equivalence:

Corollary 7. With notation as above, a monomial x(π) ∈ C[Γ̃ −] satisfies difference and initial conditions on
L(Λ) if and only if there exists a factorization

x(π) = x
(
π(1)

) · · · x
(
π(k)

)

such that x(π( j)) satisfies difference and initial conditions on L(Λi j ).

9.1. Difference conditions; Λ = kΛ0

We first prove Theorem 6 in the special case Λ = kΛ0 and later for general Λ. In this case initial
conditions (28) don’t provide any additional relations for L(kΛ0) so we are only considering difference
conditions on monomials.

First we recall a simple lemma from [26, Proposition 3] concerning the level 1 case:

Lemma 8. If xγ (− j) < xγ ′ (− j′) < xγ ′′ (− j′′) are such that monomials xγ (− j)xγ ′ (− j′) and xγ ′ (− j′)×
xγ ′′ (− j′′) satisfy difference conditions for level 1 modules, then so does xγ (− j)xγ ′′ (− j′′), and consequently
xγ (− j)xγ ′ (− j′)xγ ′′ (− j′′).

Define another order on the set of variables:

xij(−r) � xi′ j′(−r′) if

⎧⎨
⎩

−r � −r′ − 2,

−r = −r′ − 1; i > i′ or j < j′,
−r = −r′; i > i′ and j < j′.

(29)

This is equivalent to saying that xij(−r) < xi′ j′ (−r′) and a monomial xij(−r)xi′ j′ (−r′) satisfies differ-
ence conditions on modules of level 1. By Lemma 8, relation � is transitive, and hence it is a strict
partial order on the set of variables.

If we consider monomials x(π) ∈ C[Γ̃ −] as multisets, then we have the following characterization
of monomials satisfying difference conditions on level k modules:

Proposition 9. A monomial x(π) satisfies difference conditions on modules of level k if and only if every subset
of x(π) in which there are no two elements comparable in the sense of �, has at most k elements.

Proof. Let xij(−r), xi′ j′ (−r′) ∈ g̃1 be two variables and assume r � r′ . By (29), they are incomparable
if and only if
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⎧⎨
⎩

−r = −r′; i � i′, j � j′,
−r = −r′; i � i′, j � j′,
−r = −r′ − 1; i � i′, j � j′.

(30)

It is now clear that elements whose colors lie on a diagonal path that was considered in (26) are
mutually incomparable in the sense of �. Hence, if x(π) doesn’t satisfy difference conditions, then it
has a subset of at least k + 1 mutually incomparable elements. Conversely, consider a subset of x(π)

in which all elements are mutually incomparable. By relation (30), degrees of its elements can differ
for at most 1. Assume that they are of degrees −r and −r − 1. Since the elements of the same degree
are incomparable, their colors must all lie on a diagonal path like in (24). Finally, since elements of a
different degree aren’t comparable these two paths are related like in (26). �

Notice that by Lemma 8 if {xγ1 (−r1), xγ2 (−r2), . . . , xγt (−rt)} is a linearly ordered subset,

xγ1(−r1) � xγ2(−r2) � · · · � xγt (−rt),

then the monomial

xγ1(−r1)xγ2(−r2) · · · xγt (−rt)

satisfies difference conditions on modules of level 1. Thus Theorem 6 will be proved when we show
that there exists a partition of x(π) into k linearly ordered subsets.

9.2. Combinatorial lemma

Let S be a finite set, |S| = n. Let � be a strict partial order on S . For a subset X ⊂ S , we say
that X is totally disordered or discretely ordered if elements of X are mutually incomparable, i.e. if the
restriction �|X×X is an empty set.

Theorem 6 now follows from the following combinatorial lemma:

Lemma 10. Let (S,�) be a finite set with a strict partial order �. If every totally disordered subset of X consists
of at most k elements, then there exists a partition of S into at most k linearly ordered subsets.

Proof. Let l be the maximal cardinality of a totally disordered subset of S; l � k. We are going to
show that there is a partition of S into l linearly ordered subsets.

We prove this by induction on l and on the number of elements of S , n = |S|. Distinguish 2 cases:

(i) There exists a subset {a1, . . . ,al} ⊂ S consisting of mutually incomparable elements, such that
a1, . . . ,al are neither all maximal elements of S , nor all minimal elements of S .
Because of the maximality of l, every element of S is comparable to some element of {a1, . . . ,al}.
Define subsets

G = {x ∈ S, x � ai for some i},
D = {x ∈ S, x � ai for some i}.

Since by the hypothesis a1, . . . ,al are neither all maximal elements of S , nor all minimal elements
of S , sets G and D are nonempty. Thus we have a partition

S = G ∪ D ∪ {a1, . . . ,al}.
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Set

G ′ = G ∪ {a1, . . . ,al}, D ′ = D ∪ {a1, . . . ,al}.

Sets G ′ and D ′ have less than n elements, so by the induction hypothesis they can be partitioned
into linearly ordered subsets. The set {a1, . . . ,al} is at the same time the set of minimal elements
of G ′ , and the set of maximal elements of D ′ . Hence, linearly ordered subsets of G ′ end with
some of the a1, . . . ,al , while linearly ordered subsets of D ′ start with some of the a1, . . . ,al . By
“gluing” appropriate pairs together, we get a partition of S into l linearly ordered subsets.

(ii) The only set with l mutually incomparable elements is either the set of minimal, or the set of
maximal elements of S . In this case we cannot construct a partition as we did earlier because
either G or D would be empty. Consider 2 cases:
(a) Assume that the only totally disordered subset with l elements is the set of maximal elements

of S (analogously for minimal elements). Denote them by a1, . . . ,al . Choose a linearly ordered
subset {x1, x2, . . . , xr} ⊂ S that starts with a1,

a1 = x1 � x2 � · · · � xr .

The set S \ {x1, . . . , xr} has totally disordered subsets of at most l − 1 elements, so by the
induction hypothesis it can be partitioned into l − 1 linearly ordered subsets. Together with
{x1, x2, . . . , xr}, this gives a partition of S into l linearly ordered subsets.

(b) Assume that a1, . . . ,al are all maximal, and b1, . . . ,bl all minimal elements of S .
Choose a linearly ordered subset {x1, x2, . . . , xr} ⊂ S that starts with a1 and ends with some
of the b’s,

a1 = x1 � x2 � · · · � xr = bt .

Like in the previous case, the set S \ {x1, . . . , xr} has totally disordered subsets of at most l − 1
elements. By the induction hypothesis it can be partitioned into l − 1 linearly ordered subsets,
which together with {x1, x2, . . . , xr} gives a partition of S into l linearly ordered subsets. �

9.3. Initial conditions

We now prove Theorem 6 in the general case when Λ = k0Λ0 + · · · + k�Λ� .
First, let us recall initial conditions for a level 1 module L(Λi), i = 1, . . . , �. A monomial x(π)

satisfies initial conditions for L(Λi) if colors of elements of degree −1 lie below the i-th row (for
1 � i � m), or on the left of the i-th column (for m � i � �). Note that these conditions can be
understood as difference conditions if we add some imaginary elements of degree 0 to x(π): for
1 � i � m add xim(0) to x(π), and for m � i � � add xmi(0) to x(π). Then x(π) satisfies difference and
initial conditions for L(Λi) if and only if this new monomial satisfies difference conditions for L(Λi).

This observation generalizes to any level k. Let

Λ = k0Λ0 + · · · + k�Λ�, k = k0 + · · · + k�.

For every i = 1, . . . , �, we add ki elements of degree 0 of the appropriate color to x(π). Concretely,
denote by x(π ′) the monomial

x(π ′) = x(π) · xk1
1m(0)xk2

2m(0) · · · xkm
mm(0)x

km+1
m,m+1(0) · · · xk�

m�(0).

Colors of (0)-elements of x(π ′) lie on a diagonal path as pictured on Fig. 8. Consider difference con-
ditions on x(π ′) for elements of degrees −1 and 0. Assume that x(π) (and x(π ′)) contains elements
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Fig. 8. Initial conditions in terms of difference conditions.

of degree −1 whose colors γi1 j1 , . . . , γit jt lie on a diagonal path as on Fig. 8. Let a1
i1 j1

, . . . ,a1
it jt

be the
exponents of these elements. For every such choice of (−1)-elements, consider (0)-elements of x(π ′)
whose colors lie below the (it −1)-st row and on the left of the ( j1 +1)-st column – these are the ele-
ments xitm(0), xit+1,m(0), . . . , xmm(0), xm,m+1(0), . . . , xmj1 (0), with exponents kit ,kit+1, . . . ,km, . . . ,k j1 ,
respectively. By difference conditions (26) for x(π ′), we have

a1
i1 j1

+ · · · + a1
it jt

+ kit + · · · + k j1 � k.

Then

a1
i1 j1

+ · · · + a1
it jt

� k − kit − · · · − k j1 .

Hence

a1
i1 j1

+ · · · + a1
it jt

� k0 + k1 + · · · + kit−1 + k j1+1 + · · · + k�.

So, we have obtained initial conditions for L(Λ) (cf. (28)). We have proved

Proposition 11. Let x(π) and x(π ′) be as above. Then x(π) satisfies difference and initial conditions for W (Λ)

if and only if x(π ′) satisfies difference conditions.

If x(π ′) satisfies difference conditions then there exists a partition of x(π ′) into k linearly ordered
subsets. Elements of degree 0 are mutually incomparable, so they will lie in different subsets of
the partition. More precisely, they will be the maximal elements of the corresponding subsets. By
removing these (0)-elements from subsets of the partition, we get a partition of x(π) into k linearly
ordered subsets. Moreover, subsets that’ve contained (0)-elements corresponding to modules L(Λi),
i = 0, . . . , �, satisfy initial conditions on these modules. This finishes the proof of Theorem 6 in the
general case.

10. Proof of linear independence

10.1. Intertwining operators

In the level 1 case, the main technical tool in the proof of linear independence of the spanning set
of W (Λ) was the following proposition (cf. [26])
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Proposition 12. Suppose that a monomial x(π) satisfies difference and initial conditions for a level 1 standard
module L(Λi). Write x(π) = x(π1)x(π2), where x(π1) is the (−1)-part of a monomial, and x(π2) the rest of
the monomial. Then there exists a coefficient w(μ) of an intertwining operator Y(eμ, z),

w(μ) : L(Λi) → L(Λi′)

for some i′ ∈ {0, . . . , �}, such that:

• w(μ) commutes with g̃1 ,
• w(μ)x(π1)vi = Ce(ω)vi′ , C ∈ C

× ,
• x(π+

2 ) satisfies IC and DC for L(Λi′),
• if x(π ′) has a (−1)-part x(π ′

1) greater than x(π1), then w(μ)x(π ′)vi = 0.

By using Theorem 6, we are able to generalize this proposition for higher level standard modules.
Let L(Λ) be a standard module of level k, with the highest weight vector vΛ = vi1 ⊗ · · · ⊗ vik .

Fix a monomial x(π) that satisfies difference and initial conditions for L(Λ). Let

x(π) = x(π2)x(π1)

be a factorization of x(π) such that x(π1) is a (−1)-part, and x(π2) is the rest of the monomial x(π).
By Theorem 6, there exists a factorization

x(π) = x
(
π(1)

) · · · x
(
π(k)

)
,

such that x(π( j)) satisfies difference and initial conditions for L(Λi j ). Furthermore, this induces the
corresponding factorizations of x(π1) and x(π2):

x(π1) = x
(
π

(1)
1

) · · · x
(
π

(k)
1

)
, x(π2) = x

(
π

(1)
2

) · · · x
(
π

(k)
2

)
.

By Proposition 12, there exist coefficients of intertwining operators w(μ j), j = 1, . . . ,k such that

x
(
π

( j)
1

)
vi j

w(μ j)−−−−→ C ( j)e(ω)vi′j , C ( j) ∈ C
×.

Let Λ′ = Λi′1 + · · · + Λi′k , and define an operator w : L(Λ) → L(Λ′) with

w = w(μ1) ⊗ · · · ⊗ w(μk).

Let

vΛ′ = vi′1 ⊗ · · · ⊗ vi′k

be the highest weight vector of L(Λ′). Then

x
(
π

(1)
1

)
vi1 ⊗ · · · ⊗ x

(
π

(k)
1

)
vik

w−→ Ce(ω)vΛ′ , C ∈ C
×.

Since by Proposition 12, x(π( j)+
2 ) satisfy difference and initial conditions for L(Λi′j ), then, by Corol-

lary 7, x(π+
2 ) also satisfies difference and initial conditions for L(Λ′).

Since x(π(1)
1 )vi1 ⊗ · · · ⊗ x(π(k)

1 )vik is only one of the summands that we get by acting with x(π1)

on the tensor product vΛ = vi1 ⊗ · · · ⊗ vik , we need to see what happens with other summands of



G. Trupčević / Journal of Algebra 322 (2009) 3744–3774 3767
x(π1)vΛ when we act on them with the operator w? The other summands of x(π)vΛ come from
other factorizations of x(π). Let

x(π) = x
(
ν(1)

) · · · x
(
ν(k)

)
,

be another factorization of x(π), with induced factorizations of x(π1), x(π2). Assume that w doesn’t
annihilate x(ν(1)

1 )vi1 ⊗· · ·⊗ x(ν(k)
1 )vik . Since by Proposition 12, x(π( j)

1 ) is maximal for w(μ j), we have

x
(
ν

( j)
1

)
� x

(
π

( j)
1

)
, j = 1, . . . ,k.

If some of these inequalities were strict, then by Proposition 1, we would have x(π) < x(π), which is
a contradiction. Hence, all the factors must be equal,

x
(
ν

( j)
1

) = x
(
π

( j)
1

)
, j = 1, . . . ,k.

We conclude that the operator w will not annihilate only those summands of x(π1)vΛ that are equal
to x(π(1)

1 )vi1 ⊗ · · · ⊗ x(π(k)
1 )vik , and furthermore,

w · x(π1)vΛ = C · (w(μ1)x
(
π

(1)
1

)
vi1 ⊗ · · · ⊗ w(μk)x

(
π

(k)
1

)
vik

) = C ′e(ω)vΛ′ ,

for some C, C ′ ∈ C
×.

In a similar manner, we show that the operator w annihilates all x(ν)vΛ whose (−1)-part x(ν1)

is greater than x(π1). If w doesn’t annihilate x(ν)vΛ , then there exists a factorization

x(ν) = x
(
ν(1)

) · · · x
(
ν(k)

)
,

such that x(ν( j))vi j aren’t annihilated by w(μ j). We also have the induced factorization of the (−1)-
part x(ν1). By Proposition 12, we have

x
(
ν

( j)
1

)
� x

(
π

( j)
1

)
, j = 1, . . . ,k,

and by Proposition 1, we conclude

x(ν1) � x(π1).

We have proved a generalization of Proposition 12:

Proposition 13. Suppose that a monomial x(π) satisfies difference and initial conditions for L(Λ). Then there
exists an operator w : L(Λ) → L(Λ′), where L(Λ′) is another standard module of the same level, such that:

• w commutes with g̃1 ,
• w · x(π1)vΛ = Ce(ω)vΛ′ , C ∈ C

× ,
• x(π+

2 ) satisfies IC and DC for L(Λ′),
• x(π1) is maximal for w, i.e. all monomials x(π ′) such that wx(π ′)vΛ �= 0, have their (−1)-part x(π ′

1)

smaller or equal to x(π1).
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10.2. Proof of linear independence

Before we proceed with the proof of linear independence, we introduce some more notation.
For a monomial x(π), set x(πr) to be the (−r)-part of x(π), and x(πr) = 1 if x(π) doesn’t contain

any element of degree −r. Then

x(π) = x(πn)x(πn−1) · · · x(π1),

if x(π) consists of elements of degree greater than or equal to −n. Note that the order on the set
of monomials is compatible with the order on the “homogeneous parts”: x(π ′) < x(π) if and only if
there exists r ∈ N such that x(π ′

j) = x(π j), for j < r, and x(π ′
r) < x(πr).

Denote by x(π±r) a monomial corresponding to a partition π±r defined by

π±r(xγ (− j ± r)
) = π

(
xγ (− j)

)
, γ ∈ Γ, j ∈ Z. (31)

Similarly, denote by x(π+r) a monomial obtained from x(π) by raising a degree by r for all elements
of degree − j < −r, and omitting elements of degree − j � −r. Instead of x(π+1) and x(π+1), we can
also write x(π+) and x(π+), for short (cf. (10) and (11)). Note that x(π+) coincides with x(π+) if
degrees of elements of x(π) are less or equal to −2.

We prove linear independence by induction. Let

∑
cπ x(π)vΛ = 0. (32)

Assume that all monomials in (32) have elements of degree greater or equal to −n. Fix a monomial
x(π) in (32) and assume that

cπ ′ = 0 for x(π ′) < x(π).

We need to prove that cπ = 0.
By Proposition 13, there exists an operator w1 : L(Λ) → L(Λ′) such that

• w1 commutes with g̃1,
• w1 · x(π1)vΛ = C1e(ω)vΛ′ , C1 ∈ C

× ,
• x(π+) satisfies DC and IC for L(Λ′),
• w1 · x(π ′)vΛ = 0 for x(π ′

1) > x(π1).

By acting with the operator w1 on the relation (32), we get

0 = w1

∑
cπ ′ x(π ′)vΛ

= w1

∑
π ′

1>π1

cπ ′ x(π ′)vΛ + w1

∑
π ′

1<π1

cπ ′ x(π ′)vΛ + w1

∑
π ′

1=π1

cπ ′ x(π ′)vΛ.

The first sum is annihilated by w1 because of the maximality of x(π1) for w1, the second sum is
equal to 0 by the induction hypothesis. We obtain

0 = w1

∑
π ′

1=π1

cπ ′ x(π ′)vΛ

=
∑

π ′
1=π1

cπ ′ x
(
π ′

n

) · · · x
(
π ′

2

)
C1e(ω)vΛ′

= C1e(ω)
∑

π ′ =π1

cπ ′ x
(
π ′+)

vΛ′ .
1
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Since e(ω) is an injection, we get

∑
π ′

1=π1

cπ ′ x
(
π ′+)

vΛ′ = 0. (33)

Now, for x(π+) there exists an operator w2 : L(Λ′) → L(Λ′′) such that

• w2 commutes with g̃1,
• w2 · x(π+

2 )vΛ′ = C2e(ω)vΛ′′ , C2 ∈ C
× ,

• x(π+2) satisfies DC and IC for L(Λ′′),
• w2 · x(π ′+)vΛ′ = 0 if x(π ′

2) > x(π2).

Upon acting with w2 on the relation (33), we get

0 = w2

∑
π ′

1=π1

cπ ′ x
(
π ′+)

vΛ′

= w2

∑
π ′

1=π1

π ′
2>π2

cπ ′ x
(
π ′+)

vΛ′ + w2

∑
π ′

1=π1

π ′
2<π2

cπ ′ x
(
π ′+)

vΛ′ + w2

∑
π ′

1=π1

π ′
2=π2

cπ ′ x
(
π ′+)

vΛ′ .

As before, the first two sums are equal to 0 because of the action of w2 and of the induction hypoth-
esis. We obtain

0 = w2

∑
π ′

1=π1

π ′
2=π2

cπ ′ x
(
π ′+)

vΛ′

=
∑

π ′
1=π1

π ′
2=π2

cπ ′ x
(
π ′+

n

) · · · x
(
π ′+

3

)
C2e(ω)vΛ′′

= C2e(ω)
∑

π ′
1=π1

π ′
2=π2

cπ ′ x
(
π ′+2

)
vΛ′′ .

Since e(ω) is an injection, we get

∑
π ′

1=π1

π ′
2=π2

cπ ′ x
(
π ′+2

)
vΛ′′ = 0.

We proceed inductively; after n steps, we obtain

0 =
∑

π ′
1=π1

π ′
2=π2...

π ′
n=πn

cπ ′ x
(
π ′+n

)
vΛ(n) = cπ x

(
π+n

)
vΛ(n) = cπ vΛ(n)

and we can conclude that cπ = 0.
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Hence we have proved

Theorem 14. The set

{
x(π)vΛ

∣∣ x(π) satisfies DC and IC for L(Λ)
}

is a basis of W (Λ).

11. Basis of a standard module

Feigin–Stoyanovsky’s type subspace W (Λ) was implicitly introduced and studied in [22] and [23],
where a basis of the whole standard module L(Λ) was constructed from a basis of this subspace. We
have used this approach in [26] to construct a basis of standard modules of level 1, for any possible
choice of Z-gradation (1). By using Corollary 7 we are able to extend this proof to standard modules
of higher level.

Set

e =
∏
γ ∈Γ

eγ = e
∑

γ ∈Γ γ
.

Then

e = e(�+1)ω (34)

(cf. relation (26) in [26]). From (10), (34) and (31), for a monomial x(π) ∈ C[Γ̃ ] we have

ex(π) = Cx
(
π−�−1)e, (35)

for some C ∈ C
× .

The following proposition was proven by Primc (cf. [22, Theorem 8.2] or [23, Proposition 5.2]):

Proposition 15. Let L(Λ)μ be a weight subspace of L(Λ). Then there exists an integer n0 such that for any
fixed n � n0 the set of vectors

enxγ1(r1) · · · xγs (rs)vΛ ∈ L(Λ)μ,

where s � 0, γ1, . . . , γs ∈ Γ , r1, . . . , rs ∈ Z, is a spanning set of L(Λ)μ . In particular,

L(Λ) = 〈e〉U (g̃1)vΛ.

We’ll use our results on the basis of W (Λ) to prove

Theorem 16. Let L(Λ)μ be a weight subspace of a standard g̃-module L(Λ). Then there exists n0 ∈ Z such
that for any fixed n � n0 the set of vectors

enx(π)vΛ ∈ L(Λ)μ, x(π) satisfies IC and DC for L(Λ), (36)

is a basis of L(Λ)μ . Moreover, for two choices of n1,n2 � n0 , the corresponding two bases are connected by a
diagonal matrix.
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We have proved this theorem in [26] for standard modules of level 1. The first part of the theorem
directly follows from Proposition 15 and Theorem 14. For the second part of the theorem we have
considered in [26] a monomial x(μ) ∈ C[Γ̃ ] which was defined as the maximal monomial satisfying
difference and initial conditions for L(Λ) such that its factors are of degree greater or equal to −r( 1

m +
1

�−m+1 ), where r is equal to the smallest common multiple of m and � − m + 1. For simplicity, set

f = r( 1
m + 1

�−m+1 ) = r �+1
m(�−m+1)

and N = �+1
f . We showed that the following holds

(i) e(ω) f vΛ = Cx(μ)vΛ , for some C ∈ C
× ,

(ii) f divides � + 1, i.e. N ∈ N,
(iii) if a monomial x(π) satisfies difference and initial conditions for L(Λ), then so does a monomial

x(π− f )x(μ).

Then we had

e(ω) f x(π)vΛ = x
(
π− f )e(ω) f vi = Cx

(
π− f )x(μ)vΛ.

Since eωx(π)vΛ and e(ω)x(π)vΛ are proportional, the second part of the theorem followed.
To prove the theorem for higher levels, it is enough to construct a monomial x(μ) ∈ Γ̃ − that

satisfies properties (i) and (iii). Let L(Λ) be a standard module of level k, with the highest weight
vector vΛ = vi1 ⊗ · · · ⊗ vik . For each L(Λi j ), let x(μ( j)) be as in the previous paragraph. Set

x(μ) = x
(
μ(1)

) · · · x
(
μ(k)

)
.

As in the proof of Proposition 13, we have that x(μ) is the maximal monomial satisfying difference
and initial conditions for L(Λ) such that its factors are of degree greater or equal to − f , and

x(μ)vΛ = C · x
(
μ(1)

)
vi1 ⊗ · · · ⊗ x

(
μ(k)

)
vik .

Because of the property (i), we have

x(μ)vΛ = C · e(ω) f vi1 ⊗ · · · ⊗ e(ω) f vik

= Ce(ω) f vΛ, (37)

for some C ∈ N. Finally, by the property (iii) for monomials x(μ j), and by Corollary 7, it follows
that if a monomial x(π) satisfies difference and initial conditions for L(Λ), then so does a monomial
x(π− f )x(μ).

Denote x(μ̃) = x(μ(−N+1) f )x(μ(−N+2) f ) · · · x(μ− f )x(μ). By (34) and (37), we have

evΛ = Cx(μ̃)vΛ, (38)

for some C ∈ C
× . Now, by (35), we have

enx(π)vΛ = Cen−1x
(
π−�−1)x(μ̃)vΛ,

and from the definition of x(μ̃) and from the property (iii) we see that if a monomial x(π) satisfies
difference and initial conditions, then so does a monomial x(π−�−1)x(μ̃). Hence the second part of
the theorem follows.

In the end, we show how the basis of L(Λ) can be described in terms of “semi-infinite monomials”
with “periodic tail” like in [10], and a slightly different description is used in [22,23]. By commuting
monomials x(π) with group elements em in (36), we can rewrite the basis of weight subspaces of
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L(Λ) in terms of vectors of the form x(π)en vΛ instead of enx(π)vΛ (with a suitable change of degrees
of factors in monomials). Then by (38) and (35) we have

x(π)en vΛ = Cx(π)x
(
μ̃−(n−1)(�+1)

)
en−1 vΛ, (39)

for some C ∈ C
× . Now take the “limit n → −∞” in (39) and introduce a formal vector v−∞ =

limn→−∞ en vΛ . In this way, we obtain a description of the basis of L(Λ) in terms of “semi-infinite
monomials”.

12. Presentation of W (Λ)

By definition, Feigin–Stoyanovsky’s type subspace W (Λ) is a g̃1-submodule of L(Λ) generated by
the highest-weight vector vΛ ,

W (Λ) = U (g̃1) · vΛ.

Since g̃1 is commutative, we have U (g̃−
1 ) ∼= C[Γ̃ −] and

W (Λ) = C
[
Γ̃ −] · vΛ.

For 1 � i < m and m < j � � let gi j ⊂ g0 be the subalgebra generated by the elements x±αt , where
either 1 � t � i − 1 or j + 1 � t � �.

Consider a polynomial algebra C[Γ̃ −], which is also a g0-module. Let J ⊂ C[Γ̃ −] be the ideal
generated by the following sets

U (g0) ·
( ∑

r1,...,rk+1�1
r1+···+rk+1=n

xθ (−r1) · · · xθ (−rk+1)

)
, for all n ∈ N, (40)

and

U (gi j) · (xθ (−1)k0+···+ki−1+k j+1+···+k�+1), for all
i = 1, . . . ,m − 1;
j = m + 1, . . . , �.

(41)

Note that elements from (40) and (41) are the ones that appear in the relations between monomial
vectors (see Section 8.1 and the proof of Proposition 5).

Theorem 17. As a vector space, W (Λ) is isomorphic to the quotient C[Γ̃ −]/ J .

Proof. Define a mapping

ϕ0 : C
[
Γ̃ −] → W (Λ),

ϕ0 : x(π) �→ x(π) · vΛ.

Since the ideal J lies in the kernel of ϕ0, we can factorize ϕ0 to a quotient map

ϕ : C
[
Γ̃ −]

/ J → W (Λ).

The map ϕ is clearly a surjection, since ϕ0 is a surjection. We’ll show that ϕ is also an injection.
Consider a set
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B = {
x(π)

∣∣ x(π) satisfies DC and IC for L(Λ)
} ⊂ C

[
Γ̃ −]

/ J .

As in the proof of Proposition 4, we see that this set spans C[Γ̃ −]/ J . Since ϕ bijectively maps this
set onto

{
x(π)vΛ

∣∣ x(π) satisfies DC and IC for L(Λ)
} ⊂ W (Λ),

which is a basis of W (Λ), we see that B is also linearly independent. Hence ϕ maps a basis of
C[Γ̃ −]/ J onto a basis of W (Λ) and therefore ϕ is a bijection. �

This kind of presentation of W (Λ) was used in [9] in order to obtain fermionic formulas for the
character of W (Λ). Also, presentation of the Feigin–Stoyanovsky’s principal subspace (cf. [3,4,10])
was used in [1,2,5,6], for construction of exact sequences between different principal subspaces from
which they obtained recurrence relations for the characters of these spaces.
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79.

[2] C. Calinescu, Principal subspaces of higher-level standard ŝl(3)-modules, J. Pure Appl. Algebra 210 (2007) 559–575.
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