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Abstract: This paper demonstrates the use of self-oscillation identification experiments for
tuning heading and line following controllers for marine vehicles. The identification by use of
self-oscillations (IS-O) has been developed for general LTI systems and for a class of nonlinear
systems and it was used for tuning guidance controllers. The guidance controllers have been
tuned using the results from IS-O experiments. Heading controller algorithm that gives smooth
control output is presented. The line following controller generates reference heading as output.
The described methodology is applied to autonomous catamaran Charlie and the experimental
results are presented in the paper. It has been demonstrated that IS-O method gives good results
in field conditions and that it is time conservative. All algorithms and results presented here
are a result of joint work of researchers at the Consiglio Nazionale delle Ricerche, Genova and
the University of Zagreb.
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1. INTRODUCTION

Unmanned surface vehicles (USV) have recently become
an ever-growing area of research around the world. Some
examples of civil uses of USVs, which can be found
in literature, are fishing trawler-like vehicle ARTEMIS,
catamarans ACES and AutoCAT and kayak SCOUT (all
developed at MIT), Measuring Dolphin, the catamaran
Delfim, boat Caravela, autonomous catamarans Charlie
and Springer, etc. Since the vehicles are unmanned, they
all require different levels of control. The principle level of
control is motion control and it usually implies the control
of yaw and surge velocities. Mid control level, or guidance
control, has the task to generate reference signals for the
low level controllers. This level implies heading control and
trajectory following (following a time-parametrized curve)
and/or path following (following a planar path without
temporal constraints). Finally, the upper level of control
includes mission planning. This paper will address the
problems of heading control and path following. These two
controllers enable marine vehicles to either keep a desired
heading or follow a desired line regardless of the external
disturbances (sea currents which are always present).

⋆ The work was carried out in the framework of the research project
”RoboMarSec - Underwater robotics in sub-sea protection and
maritime security” supported by the Ministry of Science, Education
and Sport of the Republic of Croatia (Project No.036-0362975-2999).
The research was partially funded from the scholarship awarded by
the Italian Government and the Ministry of Science, Education and
Sport of the Republic of Croatia.

In order to tune control parameters in all three levels of
control, process’ parameters have to be identified. This can
be a very time-consuming process. Usually, identification
of marine vehicles’ mathematical model is performed in
open-loop where a great number of experiments have to
be performed. Identification procedure for autonomous
catamaran Charlie can be found in Caccia et al. (2006),
while similar techniques used on underwater vehicles are
reported in Ridao et al. (2004), Stipanov et al. (2007). All
these experiments are based on finding the vehicle’s drag
(from steady-state experiments) and inertia (from zig-zag
manoeuvres or open-loop transients). The biggest advan-
tage of these identification techniques is that the model
parameters can be determined as precisely as necessary,
given enough experimental data. The disadvantages are
the effects of the omnipresent external disturbances on
the identified parameters, and the fact that the procedure
itself is time-consuming.

The identification method which has been proposed here is
based on self-oscillations, Vukic et al. (2003). The main ad-
vantage of this method is that it is performed in closed loop
which means that the influence of external disturbances is
minimized, Miskovic et al. (2009). In addition to that, the
algorithm itself is very time conservative. On the other
hand, in order to use this method, exact mathematical
model of the identified process has to be known. Also, due
to assumptions on the higher harmonics, the identified
parameters can slightly differ from the real values. The
main goal is to define and identify an approximated model
of the system dynamics sufficient to allow the synthesis



Fig. 1. Unmanned surface vehicle Charlie.

and tuning of guidance controllers and with a degree of
precision compatible with the sensors on-board the vehicle.

The paper is organized as follows. Section 2 describes a
method called identification by use of self-oscillations (IS-
O) which can be used on linear and nonlinear systems. The
application of IS-O on steering equations and closed-loop
heading equations of marine vehicles is described in this
section. Section 3 describes the heading and line following
controller for Charlie ASV. Section 4 gives experimental
results and the paper is concluded with Section 5.

1.1 Charlie USV

The Charlie USV (see Fig. 1) is a small catamaran-
like shape prototype vehicle originally developed by the
CNR-ISSIA for the sampling of the sea surface microlayer
and immediate subsurface for the study of the sea-air
interaction Caccia et al. (2005). Charlie is 2.40 m long, 1.70
m wide and weighs about 300 kg in air. The propulsion
system of the vehicle is composed by a couple of DC
motors (300 W @ 48 V). The vehicle is equipped with a
rudder-based steering system, where two rigidly connected
rudders, positioned behind the thrusters, are actuated by
a brushless DC motor. The navigation instrumentation
set is constituted of a GPS Ashtech GG24C integrated
with compass KVH Azimuth Gyrotrac able to compute
the True North. Electrical power supply is provided by
four 12 V @ 40 Ah lead batteries integrated with four
32 W triple junction flexible solar panels. The on-board
real-time control system, developed in C++, is based on
GNU/Linux and run on a Single Board Computer (SBC),
which supports serial and Ethernet communications and
PC-104 modules for digital and analog I/O.

Steering Equation Steering equation is often described
in literature with (1) where r is yaw rate, ψ is heading, τN
commanded yaw torque, and parameters to be identified
are yaw inertia, Ir , and drag kr|r|.

Ir ṙ = −k̃r|r|r|r| + τN
ψ̇ = r

. (1)

For Charlie ASV, the yaw torque control is achieved by
controlling the rudder angle δ while propeller revolution
rate n is kept constant, i.e. τN = n2δ. The dynamic
parameters in (1) have been identified in Caccia et al.
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Fig. 2. Line following.

Fig. 3. Scheme for causing self-oscillations

(2006). The identification experiments have also shown
that the sway speed can be neglected.

Line Following Equations The line following approach is
shown in Fig. 2. The aim is to steer the vehicle moving at
surge speed ur in such a way that its path converges to the
desired line. If γ is orientation of the line that should be
followed, a new parameter β = ψ−γ (vehicle’s orientation
relative to the line) is defined. Having this in mind, the
line following equations (2) - (5) can be written, where ν
is drift due to sea current.

ṙ= −
kr|r|

Ir
r|r| +

1

Ir
τN (2)

ψ̇= r (3)

β̇ = r (4)

ḋ= ur sinβ + ν (5)

The nonlinearities of the line-following model appear in (2)
and (5). The first one can be eliminated by introducing
a low level yaw rate or heading feedback. The second
nonlinear equation can be linearized if angle β is assumed
to be small. In this case (5) can be rewritten as ḋ = urβ+ν.

2. IDENTIFICATION BY USE OF
SELF-OSCILLATIONS (IS-O)

The idea of using-self-oscillations to determine system pa-
rameters was introduced in Åstrom and Hagglund (1984)
under the name ”autotuning variation” method. Since
then, relay-feedback systems proved to be a great tool for
controller tuning in processes and for process identifica-
tion, especially in pharmaceutical industry. Recent works
on application of this methodology to marine vehicles
(surface and underwater) can be found in Miskovic et al.
(2007b), Miskovic et al. (2008) and Bibuli et al. (2008).

The self-oscillation experiment is performed in closed loop
which consists of the process itself and a nonlinear element
(see 3). The method is based upon forcing the system into



self-oscillations. The magnitude Xm and frequency ω of
the obtained self-oscillations can be used to determine pro-
cess’ parameters. The link between the space of process’
parameters and the space of magnitudes and frequencies
of self-oscillations is the Goldfarb principle given with (6),
(see Vukic et al. (2003)).

GP (jω) = −
1

GN (Xm)
= −

1

PN (Xm) + jQN (Xm)
(6)

where GN (Xm) = PN (Xm) + jQN (Xm) is the describing
function of the nonlinear element, and GP (jω) is the
process frequency characteristic. The most commonly used
nonlinear element is relay with hysteresis whose describing

function parameters are P (Xm) = 4C
πXm

√

1 −
(
xa
Xm

)2

and

Q(Xm) = − 4C
πX2

m
xa, where C is relay output and xa

is hysteresis width. Detailed derivation of the general
algorithm for determining parameters of LTI processes
can be found in Miskovic et al. (2007a). The same paper
includes modifications for astatic systems and systems
with delays. In the following subsections only final results
of the algorithm for linear systems and methodology for
using the proposed method on nonlinear systems are given.

2.1 Identifying Linear Systems

Let a linear time invariant process be described by a
transfer function (7) where n is the number of non-zero
poles, m the number of finite zeros and n ≥ m.

GP (s) =

m∑

i=0

bis
i

n∑

i=0

aisi
. (7)

Let us suppose that the closed loop system is as in
Fig. 3. Using (6), a general equation in the frequency
domain that gives relation between oscillation parameters
(magnitude Xm and frequency ω) and process’ parameters
can be constructed. In order to obtain a unique solution,
we fix the value a0 = 1. If all other parameters are
unknown, the number of the experiments that need to
be run is ε =

⌈
n+m+1

2

⌉
. Let us define three vectors of

measurements ω = [ ω1 · · · ωε ]
T
, P = [ P1 · · · Pε ]

T
and

Q = [Q1 · · · Qε ]
T

where elements Pi and Qi are real
and imaginary parts of the nonlinear element, respectively,
and ωi frequency of the self-oscillations obtained in the ith
experiment. The vector of unknown parameters is defined

as Θ =
[
Θa Θ

b

]T
= [ a1 · · · an b0 · · · bm ]

T
. From the

above mentioned we can write (8) where Ωa and Ωb are
given with (9) and (10), respectively, where Iε = Iε×ε ,
0ε = 0ε×ε , 0 = 0ε×1 , I = Iε×1.

[ Ωa Ωb ]
︸ ︷︷ ︸

Ω

Θ =

[
−I
0

]

︸ ︷︷ ︸

Y

(8)

Ωa =
[

0ε −Iε 0ε Iε

Iε 0ε −Iε 0ε

]






ω.
1 0 0 0 ω.

5 0 · · ·

0 ω.
2 0 0 0 ω.

6
· · ·

0 0 ω.
3 0 0 0 · · ·

0 0 0 ω.
4 0 0 · · ·






︸ ︷︷ ︸

n

(9)

Ωb =

[
PT QT

QT −PT

] [
Iε 0ε −Iε 0ε
0ε −Iε 0ε Iε

]

·

·







ω.0 0 0 0 ω.4 0 · · ·
0 ω.1 0 0 0 ω.5 · · ·
0 0 ω.2 0 0 0 · · ·
0 0 0 ω.3 0 0 · · ·







︸ ︷︷ ︸

m+1

(10)

The dot symbol (.k) denotes the element-wise exponent.
The parameter vector Θ can be found by using the
formula Θ = Ω−1Y only if there is an even number
of unknown parameters. If there is an odd number of
parameters, matrix Ω will have one row more than there
are parameters. In this case, the last row can simply be

omitted, or the pseudo-inversion Θ =
{
ΩTΩ

}−1
ΩTY

can be used to determine the solution. The robustness
of the procedure is ensured by choosing experiments so
that a set of suitable data is obtained, unlike classical
identification procedures where higher dimension of the
regressor guarantees greater robustness.

2.2 Identifying Nonlinear Systems

The algorithm used for nonlinear systems cannot be gener-
alized in the same manner as for linear systems. However,
let us describe the nonlinear process with

f(ai, y
(n), y(n−1), ..., y, u(m), u(m−1), ..., u) = 0 (11)

where ai are process’ parameters, y is output and u input
to the system. If the system is in oscillatory regime (due
to the presence of the nonlinear element as in Fig. 3), the
following equations can be written, under the assumption
that the oscillations are symmetric y = Xm sin(ωt), ẏ =
Xmjω sin(ωt), . . ., y(k) = Xm(jω)k sin(ωt). Unity feedback
implies that u(t) = −GN (Xm)y(t). This procedure is in
fact development of the closed loop equation into Fourier
series. The main assumption in the describing function
method is that higher harmonics are negligible (see Vukic
et al. (2003)) - this simplifies (11) and (12) is obtained.

fR(ai, Xm, ω) + jfI(ai, Xm, ω) = 0 (12)

From here, if sufficient number of experiments is per-
formed, unknown parameters can be determined.

2.3 Application to Yaw Degree of Freedom

Using the procedure described in 2.2, the following equa-
tion is obtained.

−Xmω
2 sin(ωt)Ir +X2

mω
2 cos(ωt)| cos(ωt)|kr|r|

= GNXm sin(ωt)

By developing the nonlinear term into a Fourier se-
ries where only the first harmonic is retained, i.e.
cos (ωt) |cos (ωt)| ≈ 8

3π cos (ωt) = j 8
3π sin (ωt), (13) and

(14) can be derived.

Ir =
PN

ω2
(13)

kr|r| =−
3π

8

QN

Xmω2
(14)



2.4 Application to Heading Closed Loop

There are cases when heading closed loop already exists in
the system and it is not possible to identify the open loop
dynamics. Moreover, the only control signal which can be
commanded to the system is the reference heading value.
Let us suppose that heading closed loop transfer function
can be written as in (15).

ψ

ψref
=

b1ψs+ 1

a3ψs3 + a2ψs2 + a1ψs+ 1
(15)

Using the procedure presented in 2.1 with n = 3 and
m = 1. Under the assumption that the heading control
loop is set properly (the closed loop gain should be 1,
i.e. b0 = 1), two equations (obtained from the same
experiment, e.g. the last one) can be omitted which results
in final algorithm shown with (16). From this follows
that two experiments have to be performed in order to
determine unknown parameters from (15).







0 −ω2
1 0 −ω1Q1

0 −ω2
2 0 −ω2Q2

ω1 0 ω3
1 ω1P1

ω2 0 ω3
2 ω2P2












a1ψ

a2ψ

a3ψ

b1ψ




 =






−1 − P1

−1 − P2

−Q1

−Q2




 (16)

3. HEADING AND LINE-FOLLOWING
CONTROLLER DESIGN

3.1 Heading Controller for Charlie ASV

The controller that is used is given with (17) where k̃r|r|
is drag identified using the self-oscillation algorithm (14)
and eψ = ψref − ψ. This is an I-PD controller modified
so that it would compensate for the nonlinearity which
appears in the steering equation (1), Vukic and Kuljaca
(2005). This controller is appropriate for control because
controller output is smooth even when abrupt reference
heading changes are commanded.

τN = KIψ

t∫

0

eψdt−KPψψ −KDψψ̇ + k̃r|r|ψ̇
∣
∣
∣ψ̇

∣
∣
∣ (17)

Using control algorithm (17), the closed loop equation is

ψ

ψref
=

1

Ir

KIψ
︸ ︷︷ ︸

a3ψ

s3 +
KDψ

KIψ
︸ ︷︷ ︸

a2ψ

s2 +
KPψIr

KIψ
︸ ︷︷ ︸

a1ψ

s+ 1
(18)

where Ĩr is yaw inertia identified using the self-oscillation
algorithm (13). The controller parameters are set so that
the closed-loop transfer function is equal to the model
function Gmψ (s) = 1

a3ψs3+a2ψs2+a1ψs+1 which is stable. In

that case, the controller parameters are given with (19).

KIψ =
Ĩr

a3ψ
, KPψ =

a1ψ

a3ψ
, KDψ =

a2ψ

a3ψ
Ĩr (19)

Stability of this closed loop system can be compromised if
unknown process parameters are falsely identified. Having
this in mind, in Miskovic et al. (2008) it is shown how
saturating the derivation channel of the controller can
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Fig. 4. Line following control structure.

ensure closed loop stability. To sum up, the algorithm for
controller tuning is as follows:

I Perform one self-oscillation experiment on open loop
steering system (1) and determine magnitude Xm and
frequency ω of self-oscillations.

II Calculate Ĩr and k̃r|r| using (13) and (14).
III Define desired closed loop dynamics (a3ψ , a2ψ and

a1ψ).
IV Calculate controller parameters using (19) and imple-

ment the controller using (17).

3.2 Line-Following Controller

Here we present a line following approach which is suitable
if heading control has already been achieved or open-loop
steering equation cannot be identified and only closed-loop
heading equation parameters can be determined. In other
words, heading controller parameters cannot be tuned, but
have already been set. This means that only one tunable
controller exists, and that is the line-following controller
which gives reference heading, ψref , as output. The overall
control scheme using this approach is shown in Fig. 4.

If heading control loop is closed using a P-D controller
than it has two poles and no finite zeros. If I-PD controller
is used than the closed loop has three poles without
finite zeros. Now let’s assume that the heading controller
is of unknown structure. For the sake of generality, an
assumption is made that the closed loop heading control
can be approximated with three poles and one finite zero
giving the transfer function in a form (20).

ψ

ψref
=

b1ψs+ 1

a3ψs3 + a2ψs2 + a1ψs+ 1
(20)

The parameters of this transfer function are not known
so two self-oscillation experiments have to be carried out
as described in 2.4. Using (16), unknown parameters can
be identified. For the purpose of controller tuning, we can
simplify this transfer function with two poles and a zero.
In short, first it is necessary to find the real pole and than
the following approximation can be made

ψ

ψref
=

b1ψs+ 1

(− 1
p
s+ 1)( 1

ω2 s2 + 2ζ
ω
s+ 1)

≈
b̄1ψs+ 1

ā2ψs2 + ā1ψs+ 1

where b̄1ψ = b1ψ + 1
p
, ā2ψ = 1

ω2 and ā1ψ = 2ζ
ω

.

The line-following controller is than given with (21).

ψref = −Kψψ −Krr −Kdd+KId

t∫

0

(dref − d) dt (21)

According to Fig. 4, open loop transfer function is given
with d

ψref
= ur

s

ψ

ψref
which yields the closed loop trans-



fer function given with (22) with a0 = urKId
ā2ψ+b̄1ψKr

,

a1 =
urKd+b̄1ψKIdur
ā2ψ+b̄1ψKr

, a2 =
1+Kψ+b̄1ψKdur
ā2ψ+b̄1ψKr

and

a3 =
ā1ψ+Kr+b̄1ψKψ
ā2ψ+b̄1ψKr

.

d

dref
=

(
b̄1ψs+ 1

)
a0

s4 + a3s3 + a2s2 + a1s+ a0
(22)

From here, the controller parameters can be calculated
using matrix equation (23).




1 − a3 b̄1ψ b̄1ψ 0 0
−a2 b̄1ψ 1 b̄1ψur 0
−a1 b̄1ψ 0 ur urb1ψ

−a0 b̄1ψ 0 0 ur









Kr

Kψ

Kd

KId



 =





a3ā2ψ − ā1ψ

a2ā2ψ

a1ā2ψ

a0ā2ψ



(23)

This procedure can also be used when heading controller
structure and parameters are known and tunable. Nev-
ertheless, this approach enables tuning the line-following
controller without changing the heading controller param-
eters. The algorithm can be summarized as follows:

I Perform two self-oscillation experiments on a closed
loop steering system (15) and determine magnitudes
Xm1, Xm2 and frequencies ω1, ω2 of self-oscillations.

II Calculate a3ψ, a2ψ, a1ψ and b1ψ using (16).
III Calculate approximated parameters ā2ψ, ā1ψ and b̄1ψ.
IV Define desired line following closed loop dynamics (a3,

a2, a1 and a0).
V Calculate line-following controller parameters using

(23) and the identified parameters.
VI Implement line following controller using (21).

4. EXPERIMENTAL RESULTS

The following section will give experimental results for
closed loop heading response and line following responses.
All results are obtained using the IS-O method. For the line
following controller, we present results when inner control
loop (heading controller) has two different structures: Case
1 is achieved by a P-D controller and Case 2 by a I-
PD heading controller. These experiments were performed
to demonstrate that the proposed methodology works for
various inner loop control structures.

4.1 Heading Controller

The identification experiments was run so that the relay
output (rudder angle δ) was C = 25◦ and hysteresis
width was xa = 10◦. The experiment is shown in Fig. 5.
The complete identification experiment finished after 5
oscillations which took about 80s. The I-PD controller
given with (17) was tuned so that the desired closed
loop function is Bessel filter with characteristic frequency
0.45s−1. Heading responses are shown in Fig. 6. Heading
response has little overshoot and steady-state error does
not exist. Rudder activity in steady-state is low, which
is one of the strongest specifications while designing the
control system in order to minimize energy consumption
and mechanical stress.

4.2 Line-following Controllers

In these identification experiments, relay output C is
commanded heading angle ψREF . Two experiments with
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Table 1. Relay parameters for cases 1 & 2.

Case IS-O Experiment #1 IS-O Experiment #2

1 C = (−90 ± 20)◦, xa = 5◦ C = (90 ± 15)◦, xa = 5◦

2 C = (−90 ± 10)◦, xa = 5◦ C = (90 ± 30)◦, xa = 10◦
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Fig. 7. I-SO applied to heading closed loop - Case 2.

relay parameters have to be run in order to identify the
inner closed loop transfer function. These parameters are
shown in Table 1. The relay parameters were chosen in
such a way that the rudder during the experiments never
saturates. This is very important because only in that case
true inner loop dynamics can be identified. The experiment
is shown in Fig. 7. Here we give responses only for IS-
O experiment for Case 2 for brevity. Each identification
experiment takes about 1.5min.

The line following controller given with (21) was tuned
so that the desired closed loop function is Bessel filter.
For both cases the characteristic frequency of the fourth
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Fig. 11. Responses during path in Fig. 10 (Case 2).

order Bessel filter was chosen so that the rudder activity
in steady-state is low. For Case 1, the U-turn path of the
vehicle is shown in Fig. 8 while the commanded heading
ψREF , heading ψ and rudder angle δ are shown in Fig. 9.
For Case 2, the U-turn path of the vehicle is shown in
Fig. 10 while ψREF , ψ and δ are shown in Fig. 11. It is
clear that, for both cases, rudder activity in steady-state
is minimal, and that the line following is without error.

5. CONCLUSION

The paper presents the use of IS-O method applied to de-
signing guidance controllers - heading and path following.

The proposed method was applied to autonomous cata-
maran Charlie and has proved to be simple and feasible in
field conditions. During the IS-O experiments it was shown
that rudder must not saturate in order to obtain properly
identified model. The methodology was used to tune path
following controller which outputs reference heading. Two
different, pre-tuned, inner control loop dynamics were
identified using the proposed method and the designed
controller demonstrated satisfactory performance.
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