Pregled bibliografske jedinice broj: 436359
BIBD's for (13, 5, 5), (16, 6, 5) and (21, 6, 4) Possessing Possibly an Automorphism of Order 3
BIBD's for (13, 5, 5), (16, 6, 5) and (21, 6, 4) Possessing Possibly an Automorphism of Order 3 // World Academy of Science, Engineering and Technology Volume 58 / Cemal Ardil (ur.).
Venecija: World Academy of Science, Engineering and Technology (WASET), 2009. str. 885-888 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 436359 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
BIBD's for (13, 5, 5), (16, 6, 5) and (21, 6, 4) Possessing Possibly an Automorphism of Order 3
Autori
Martinjak, Ivica ; Pavčević, Mario-Osvin
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
World Academy of Science, Engineering and Technology Volume 58
/ Cemal Ardil - Venecija : World Academy of Science, Engineering and Technology (WASET), 2009, 885-888
Skup
International Conference on Computer and Applied Mathematics
Mjesto i datum
Venecija, Italija, 28.10.2009. - 30.10.2009
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
BIBD; incidence matrix; automorphism group; tactical decomposition; deterministic algorithm
Sažetak
When trying to enumerate all BIBD's for given parameters, their natural solution space appears to be huge and grows extremely with the number of points of the design. Therefore, constructive enumerations are often carried out by assuming additional constraints on design's structure, automorphisms being mostly used ones. It remains a hard task to construct designs with trivial automorphism groups - those with no additional symmetry - although it is believed that the most of the BIBD's belong to that case. In this paper, very many new designs with parameters 2-(13, 5, 5), 2-(16, 6, 5) and 2-(21, 6, 4) are constructed, assuming an action of an automorphism of order 3. Even more, it was possible to construct millions of such designs with no non-trivial automorphisms.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
036-0372785-2964 - Kombinatorički dizajni i konačne geometrije (Pavčević, Mario-Osvin, MZO ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb