Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 428918

Geometry of numbers, equivalent L-type and coverings


Dutour Sikirić, Mathieu; Schurmann, Achill; Vallentin, Frank
Geometry of numbers, equivalent L-type and coverings // Stochastic Models and Discrete Geometry (2005), The Institute of Statistical Mathematics
Tokyo, Japan, 2005. (plenarno, međunarodna recenzija, pp prezentacija, znanstveni)


CROSBI ID: 428918 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Geometry of numbers, equivalent L-type and coverings

Autori
Dutour Sikirić, Mathieu ; Schurmann, Achill ; Vallentin, Frank

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, pp prezentacija, znanstveni

Izvornik
Stochastic Models and Discrete Geometry (2005), The Institute of Statistical Mathematics / - , 2005

Skup
Stochastic Models and Discrete Geometry (2005), The Institute of Statistical Mathematics

Mjesto i datum
Tokyo, Japan, 24.03.2005. - 25.03.2005

Vrsta sudjelovanja
Plenarno

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Delaunay polytope; covering; records

Sažetak
Given a lattice L, a polytope P is called a Delaunay polytope if the set of its vertices is S inter L with S being an empty sphere. The set of lattices of R^n corresponds to the cone of positive definite symmetric matrices. If one prescribes the Delaunay polytopes of the lattice, then the corresponding set of matrices is a polyhedral cone called a L-type. A lattice covering is a set of balls x+B(0, R) with x belonging to a lattice L and such that every point belongs to at least one ball. The optimization of the covering density of lattice belonging to a fixed L-type is a semidefinite programming problem. We introduce an equivariant setting for that theory, i.e. we see what happens when one considers lattices invariant under a fixed symmetry group. We do this restriction, since there is too much L-types for dimensions greater than 5. By application of the theory developed, we obtain some record coverings in dimension 6 and above. Then, we show what happens when one consider non-lattice but still periodic sets of the form x0+L, ..., xm+L with L a lattice and xi some points.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Mathieu Dutour Sikirić (autor)

Citiraj ovu publikaciju:

Dutour Sikirić, Mathieu; Schurmann, Achill; Vallentin, Frank
Geometry of numbers, equivalent L-type and coverings // Stochastic Models and Discrete Geometry (2005), The Institute of Statistical Mathematics
Tokyo, Japan, 2005. (plenarno, međunarodna recenzija, pp prezentacija, znanstveni)
Dutour Sikirić, M., Schurmann, A. & Vallentin, F. (2005) Geometry of numbers, equivalent L-type and coverings. U: Stochastic Models and Discrete Geometry (2005), The Institute of Statistical Mathematics.
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Schurmann, Achill and Vallentin, Frank}, year = {2005}, keywords = {Delaunay polytope, covering, records}, title = {Geometry of numbers, equivalent L-type and coverings}, keyword = {Delaunay polytope, covering, records}, publisherplace = {Tokyo, Japan} }
@article{article, author = {Dutour Sikiri\'{c}, Mathieu and Schurmann, Achill and Vallentin, Frank}, year = {2005}, keywords = {Delaunay polytope, covering, records}, title = {Geometry of numbers, equivalent L-type and coverings}, keyword = {Delaunay polytope, covering, records}, publisherplace = {Tokyo, Japan} }




Contrast
Increase Font
Decrease Font
Dyslexic Font