Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 424617

Blind decomposition of low-dimensional multi-spectral image by sparse component analysis


Kopriva, Ivica; Cichocki, Andrzej
Blind decomposition of low-dimensional multi-spectral image by sparse component analysis // Journal of Chemometrics, 23 (2009), 11; 590-597 doi:10.1002/cem.1257 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 424617 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Blind decomposition of low-dimensional multi-spectral image by sparse component analysis

Autori
Kopriva, Ivica ; Cichocki, Andrzej

Izvornik
Journal of Chemometrics (0886-9383) 23 (2009), 11; 590-597

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Multi-spectral imaging; Chemical imaging; Cell imaging; Sparse component analysis; Nonnegative matrix factorization.

Sažetak
Multilayer hierarchical alternating least square nonnegative matrix factorization approach has been applied to blind decomposition of low-dimensional multi-spectral image. Performance of the algorithm is invariant with respect to statistical (in)dependence between materials present in the image that is an assumption upon which many existing blind source separation methods depend. The proposed method performs blind decomposition exploiting spectral diversity and spatial sparsity between the materials present in the image. Unlike many existing blind source separation methods the method is capable to estimate the unknown number of materials present in the image. This number can be less than, equal to or greater than the number of spectral bands. Performance of the method is evaluated on underdetermined blind source separation problems associated with blind decompositions of experimental red-green-blue images composed of four materials. The proposed algorithm showed best performance in comparison with methods based on -norm minimization: linear programming and interior-point methods. In addition to tumor demarcation problem demonstrated in the paper, other areas that can also benefit from proposed method are cell and chemical imaging.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Računarstvo, Temeljne medicinske znanosti



POVEZANOST RADA


Projekti:
098-0982903-2558 - Analiza višespektralih podataka (Kopriva, Ivica, MZOS ) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Ivica Kopriva (autor)

Citiraj ovu publikaciju:

Kopriva, Ivica; Cichocki, Andrzej
Blind decomposition of low-dimensional multi-spectral image by sparse component analysis // Journal of Chemometrics, 23 (2009), 11; 590-597 doi:10.1002/cem.1257 (međunarodna recenzija, članak, znanstveni)
Kopriva, I. & Cichocki, A. (2009) Blind decomposition of low-dimensional multi-spectral image by sparse component analysis. Journal of Chemometrics, 23 (11), 590-597 doi:10.1002/cem.1257.
@article{article, author = {Kopriva, Ivica and Cichocki, Andrzej}, year = {2009}, pages = {590-597}, DOI = {10.1002/cem.1257}, keywords = {Multi-spectral imaging, Chemical imaging, Cell imaging, Sparse component analysis, Nonnegative matrix factorization.}, journal = {Journal of Chemometrics}, doi = {10.1002/cem.1257}, volume = {23}, number = {11}, issn = {0886-9383}, title = {Blind decomposition of low-dimensional multi-spectral image by sparse component analysis}, keyword = {Multi-spectral imaging, Chemical imaging, Cell imaging, Sparse component analysis, Nonnegative matrix factorization.} }
@article{article, author = {Kopriva, Ivica and Cichocki, Andrzej}, year = {2009}, pages = {590-597}, DOI = {10.1002/cem.1257}, keywords = {Multi-spectral imaging, Chemical imaging, Cell imaging, Sparse component analysis, Nonnegative matrix factorization.}, journal = {Journal of Chemometrics}, doi = {10.1002/cem.1257}, volume = {23}, number = {11}, issn = {0886-9383}, title = {Blind decomposition of low-dimensional multi-spectral image by sparse component analysis}, keyword = {Multi-spectral imaging, Chemical imaging, Cell imaging, Sparse component analysis, Nonnegative matrix factorization.} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font