аЯрЁБс>ўџ 13ўџџџ0џџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџџьЅС5@№ПЂ$bjbjЯ2Я2 8*­X­Xё џџџџџџˆRRRRRRRfNNN8†ЂfАЖТТТТТТТТчщщщщщщ$fRИ  ]R? ТТ? ? RRТТjС С С ? "RТRТчС ? чС .С я RRя ТЖ АьX†ЗЩNa я ч€0Ая Фw (Фя ffRRRRя ФR фТZ@С \4ЏТТТ  ffDЊЄŸ "ffЊPAPER for Symposium number 3 Session on Relativity or Field Theory or Gravitation Generalised Relativistic Hamiltonian in an Alpha Field Branko Novakovic FSB - University of Zagreb, Luciceva 5, P. O. B. 509, 10000 Zagreb, Croatia Fax. (+385) 1 61 68 351, E-mail: branko.novakovic(fsb.hr Keywords: Dimensionless Field Parameters, Relativistic Hamiltonian, Linear Dirac's like Hamiltonian, Nonlinear Hamiltonian, Nonrelativistic Approximation. Abstract An alpha field is a potential field that can be presented by two dimensionless field parameters Б and Б2 . These parameters should satisfy the field equations of the related potential field in each concrete case. The problem is to derive the generalized relativistic Hamiltonian form that can be applied to an alpha field. In the derivation of the generalized relativistic Hamiltonian the new General Lorentz Transformation model (GLTБ  model, presented in CASYS'99 ) is employed. Starting with variation principle, a linear Dirac's like relativistic Hamiltonian has been derived as the function of the field parameters Б and Б2 . It is also shown that the same Hamiltonian can be derived starting with the generalized line element ds, since ds is a fundamental invariant of the four dimensional space-time continuum (IJCAS-2001, vol.10). The obtained form of the Hamiltonian is equal to the general covariant energy equation that can bee derived by employing the null component of the covariant four-momentum vector in an alpha field. The obtained result gives the possibility to compare the coefficients of the well known Dirac’s Hamiltonian with the related coefficients of the linear Dirac's like relativistic Hamiltonian as the function of the field parameters Б and Б2 . This comparison illuminates the new properties of the coefficients of the Dirac s Hamiltonian and helps to understand their physical sense. The nonlinear relativistic Hamiltonian for an alpha field has beeTU`a„ŒŽžŸ " # * + 5 7 U c } Ї Љ Ш Щ Ъ в г іъпдаЬШФЬНЖВЎЇНН”Œ„€|€|u|gН[NhEWhЃjFaJmH sH hEWhЃjF5mH sH hEWhА$0J5CJaJ hEWh=хhЋ'ŽhР}hEWhо&5hEWhgkŽ5hEWhl0J j@hEWhgkŽ hEWh*IBhgkŽh*IB hEWhl hEWhgkŽhe` hM!Uh”QНh5TїhдTяhдTяCJ aJ hдTяhдTяCJaJhдTяhдTя5CJaJhдTя5CJaJTUŽŸ №* + Щ Ъ г tš$œ$ž$ $њђђњэхххххбПЕ­Ѕ žžgdн'#$a$gdЪ]r$a$gdŽ[§  Ц7ЄxgdMAљ$„„шњЄx^„`„шњa$gdgkŽ$„q„о„“њ]„q^„о`„“њa$gdCLђ$a$gdgkŽgdgkŽ$a$gdдTяgdCLђš$ $ўўг ж € T І Р 0 R b ” Є Ќ   $ 6 > P T X n 4X˜ЄЎЦює(Jl)>BT€ˆАр3RW\тrt†ЪЬвдмр№8ŒОђ0ќјє№ь№ќхјќјќрмјќјќиќиќимќиќиќиќдќдќдќдќдќдќдќаќаќаќФќРЙЕќРќРќГќРќЏЋh$hZYUh$"' hŽ[§56hП”hwdhŽ[§5CJaJh›]рh.щh Chwa› hŽ[§H* hNнhŽ[§he?~hдTяh{lhM!UhŽ[§Cn derived starting with the linear one and using quadratic operation. This form of the Hamiltonian is a function of the relativistic invariant term ББ2 and belongs to the usual structure of the relativistic Hamiltonian. The main shortage of this form of the Hamiltonian is the fact that this form is a nonlinear function of the extended momentum. Usually, one can introduce the nonrelativistic approximation of the nonlinear relativistic Hamiltonian. It also has been done in this paper. The explanation of the occurrence of the four possible components of the relativistic Hamiltonian in an alpha field, like in the Dirac s theory, has also been presented and discussed. Including the solutions of the field parameters Б and Б2 in the electromagnetic and gravitational fields, we obtain the related Hamiltonians for an electron in the electromagnetic field and for a particle in the gravitational field. The obtained Hamiltonians can also be applied for the case where two or more potential fields are present at the same time. This is about the Hamiltonian of the multipotential field, of course. 06X„ЎДЖъє>ˆ”вђ 8 К Т № !>!p! !Є!Ў!&"Z"###P#Z#*$B$V$„$–$˜$š$œ$ $Ђ$ќјќјќјќјќјќјєјєјэјєјєјєјщјщјхјсјщсщјнйвйЫФРЫh$"' hЏ[љh$"' h‹`hŽ[§ h‹`h‹`h‹`h}!{hЛ!{h$hN hAhŽ[§hZYhŽ[§hП”, $Ђ$ї$a$gdЪ]r6&P 1h:pUАƒ. АШA!АЅ"АЅ#Ѕ$Ѕ%ААХАХ Фœ@@ёџ@ NormalCJ_HaJmH sH tH T@T ѓз Heading 2$$ Ц7@@&a$5\aJmHsHDA@ђџЁD Default Paragraph FontRi@ѓџГR  Table Normalі4ж l4жaі (kєџС(No ListHB@ђH ѓз Body Text$ Ц7@a$ aJmHsHB>@B ѓзTitle$a$5CJ \aJmHsHZўOёџZgkŽ Article Title$a$5CJ _HmHnHsH tH u6ўO6 gkŽAbstractdрaJBўOђџ1B gkŽ AffiliationCJOJQJ^Jo(@ўOЂA@ gkŽ First NameCJOJQJ^Jo(>ўOЂQ> gkŽ Last NameCJOJQJ^Jo(*ўOЂa* gkŽ Separator4ўOђџq4 А$PACScode CJOJQJ@ўOЂ@ н'#Bib First Name CJOJQJ>@’> н'#Header ЦрР!dрaJѕ *џџџџTUŽŸ №*+ЩЪг^ё ђ ѓ і ˜0€€˜0€€˜0€€p˜0€€p˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€ˆ˜0€€ˆ˜0€€˜0€€˜0€€˜@0€€ј€˜@0€€0иCŽё ѓ і Oy00†Oy00†š€€  лwOy00|†Xv 0 œжCг 0Ђ$  $Ђ$  $ џџСCœпТC\хУCœфФCмфХCм,ЬЦCTЬРІІДппші АККхяяі V*€urn:schemas-microsoft-com:office:smarttags€place€http://www.5iantlavalamp.com/8*€urn:schemas-microsoft-com:office:smarttags€City€_*€urn:schemas-microsoft-com:office:smarttags€country-region€http://www.5iantlavalamp.com/=*€urn:schemas-microsoft-com:office:smarttags €PlaceName€=*€urn:schemas-microsoft-com:office:smarttags €PlaceType€ Šё ѓ і ё ѓ і  *ё ѓ і Šё ѓ і џџbranko MAC-BrankoРyPaѓхђ2+a+ZYs1OecniV*(+;I‹`<~тC ƒВs`)UдбUї.—0hbNVэiqhР}ЉBL5чO nU e` †d!Е"н'#–F#А$ЌQ%о&$"'кb'№$)ЌA)›k,2 -c7/‰K0ƒ1Fi134В/;›\;!<Ў.=Rj>У/?*IB CъD26DŠE'FЃjF6eJМ@KА[Л^[—3\7}\]HV^n_БZ_~]aYscŸycq eЙSgChъRhSh{l‡mFZmКoŠPp #qќPqЪ]rzt?tI1u/tz}!{Л!{№`{Wm|ь0}Б8}e?~ВЕ~ћ €€N Ьyп"‚ƒПƒŸ*ƒhdƒc„†…оr†FV‡ov‡З(‰=t‰Ь ‹жCŒЫ $нŽЋ'ŽgkŽЌ.lF*П”уs”Ъ"–Rp–>z–†H—БX™р›wa›ѕ; ( Ёі&ЁfZЂХAЃ€ЄBЄк.Ѕl{І#ЉъSЊ+Б0_Б­В@=Г