Pregled bibliografske jedinice broj: 420693
Feature Set Extension for Heart Rate Variability Analysis by Using Non-linear, Statistical and Geometric Measures
Feature Set Extension for Heart Rate Variability Analysis by Using Non-linear, Statistical and Geometric Measures // Proceedings of the ITI 2009, 31st International Conference on Information Technology Interfaces / Luzar-Stiffler, Vesna ; Jarec, Iva ; Bekić, Zoran (ur.).
Zagreb: Sveučilišni računski centar Sveučilišta u Zagrebu (Srce), 2009. str. 35-40 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 420693 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Feature Set Extension for Heart Rate Variability Analysis by Using Non-linear, Statistical and Geometric Measures
Autori
Jović, Alan ; Bogunović, Nikola
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the ITI 2009, 31st International Conference on Information Technology Interfaces
/ Luzar-Stiffler, Vesna ; Jarec, Iva ; Bekić, Zoran - Zagreb : Sveučilišni računski centar Sveučilišta u Zagrebu (Srce), 2009, 35-40
ISBN
978-953-7138-15-8
Skup
31st International Conference on Information Technology Interfaces, ITI 2009
Mjesto i datum
Dubrovnik, Hrvatska; Cavtat, Hrvatska, 22.06.2009. - 25.06.2009
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
non-linear analysis; geometric features; ECG classification; classification algorithms; random forest; RIPPER
Sažetak
The goal of this paper is to evaluate the application of a combination of heart rate variability features on successful classification of known heart disorders. We propose an extension over our previous work, which employs 11 features, both from non-linear and linear analysis of heart rate variability. The features were extracted from electrocardiogram recordings and analyzed in Weka system for data mining using several well-known classification algorithms: C4.5 decision tree, Bayesian network, random forest, and RIPPER rules. Significance of each feature is analyzed and the algorithms' success rates are compared. The selected combination of features has a high classification potential.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb