ŠĻą”±į>ž’ NPž’’’M’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ģ„ĮU@šæLbjbj¬›¬› .PĪńĪńĘ+’’’’’’ˆœœœœœœœ°8Pd<°o#ö¬¬"ĪĪĪĪĪĪÖ"Ų"Ų"Ų"Ų"Ų"Ų"e$R·&8Ų"QœĪĪĪĪĪŲ"œœĪĪ)#n"n"n"ĪĢœĪœĪÖ"n"ĪÖ"n"n"~"œœ~"Ī  @CžlĒŽČšT~"Ö"?#0o#~"ļ&ī!jļ&~"°°œœœœļ&œ~"XĪĪn"ĪĪĪĪĪŲ"Ų"°°Ät¤X"°°t1 Instrumented gait analysis of traumatic transtibial amputee patients Kova  Ida 1*, Medved Vladimir 2, Kasovi Mario 2 1 Institute For Rehabilitation And Orthopaedic Devices University Hospital Zagreb 10 000 Zagreb, Bo~idarevieva 11, Croatia 2 Faculty of Kinesiology, Horvaanski zavoj 15, 10 000 Zagreb, Croatia *E-mail: idakovac@mail.inet.hr Abstract: Presented study gives findings of quantitative gait analysis and evaluation of different adaptive strategies of body in 12 traumatic transtibial amputee patients with prosthesis. Gait analysis consists of kinematics, ground reaction force kinetics, multichannel surface electromyography of quadriceps and hamstrings of amputated and non-amputated legs. Results of gait analysis discloses asymmetries in gait parameters between the amputated and sound legs, as well between transtibial amputees and non-disabled persons. Kinematic results showed that the ankle kinematics of prosthetic limb are significantly reduced while hip flexion are increased in late stance phase. Temporal spatial parameters were different: prosthetic stance phase (ms and % GC) was shorter, swing phase and prostetic step lenght were significantly prolonged. Walking speed of amputees was slower. Results of kinetic analysis shows decreased ground reaction (vertical Fz1 and Fz3, fore.-aft and medio-lateral Fy1 and Fy2) under prosthetic limb while sound limb has larger magnitude of vertical force Fz2. 1 INTRODUCTION Amputees with trauma related amputation represent a very specific group of patients, first of all because of their age (working age adults). It is well known that amputation is a reason of significant impact on employment and quality of life during the next 40 to 50 years of remaining life of the young amputee patient.They have great potential for enhancement of function through appropriate rehabilitation and use of effective prosthetic devices. Very often they adapt a unique way of ambulating with prosthesis. Most of the adaptations in their walk can be discerned by means of observation but it is not sufficient enough to note walking complexity, so, objective gait analysis becomes necessary (1, 2,3). 2 METHODS AND SUBJECTS 2.1. Methods Kinematic procedures measure the motion of the body and limb segments data were assessed by optoelectronic system Elite Bimech (BTS Bioengineering, Milano) with eight-camera high-speed video system. Markers were placed over predefined bony landmarks on the arms, trunk, pelvis, and legs and they were used to track the three-dimensional locations of individual body segments throughout a gait cycle. Kinetic analyses were performed by collection of ground reaction forces data as subjects walk over force plates (Kistler) embedded into the floor of the laboratory. Dynamic electromyography (EMG) is performed to determine the timing of muscle activation and to estimate the relative magnitude of muscle contraction. EMG data were collected on multichannel surface electromyography (EMG) of quadriceps and hamstrings of both the amputated and nonamputated legs (TELEMG ). 2. 2. Subjects Study population consisted of twelve (12) males with right trans-tibial traumatic amputation in mean age 40.25+6 years (31-52) volunteered to participate in this study. They were all war victims, mostly injured by means of land mines, at the period 1991- 1995. The time lapse between the date of amputation and the time of testing ranged from 8 to 12 years (mean time 10.08+1.5 years). All prosthesis were patellar-tendon bearing (PTB) with dynamic feet. All subjects were excellent walkers who used their prosthesis on a regular basis and were leading an active normal life. 3 RESULTS Kinematic results showed differences in kinematic parameters of transtibial amputees comparing to able-bodied individuals. Primarily, the ankle kinematics of their prosthetic limb is significantly reduced while hip flexion is increased in their late stance phase. Temporal-spatial parameters at persons with lower-limb amputation are also different. Prosthetic stance phase (ms and % GC) was shorter, while swing phase and prostetic step lenght were significantly prolonged. Walking speed of amputees was slower than their ablebodied counterpairs but better . Results of kinetic analysis shows decreased ground reaction (vertical - Fz 1 and Fz 3, fore.-aft Fx 1 and Fx 2 and medio-lateral - Fy 1 and Fy 2) under prosthetic limb, while sound limb has larger magnitude of vertical force Fz 2. EMG results show that quadriceps and hamstrings activity on the prosthetic limb is increased in comparison with the sound limb in stance and swing phase (8, 9,10,11,12,). 4 DISCUSSION Results of our instumented biomechanical quantitative gait analysis study and evaluation of transtibial amputee persons compared to able bodied person provide objective assessment about the way prosthetic persons walk. Kinematic results showed that the ankle kinematics of prosthetic limb is significantly reduced while hip flexion is increased in late stance phase (5,6,7). Temporal spatial parameters are also different, so prosthetic stance phase (ms and %GC) were shorter, while swing phase and prostetic step lenght were significantly prolonged (6,7,13,14,5,6). Cadence and walking speed of our amputees (1.23 m/s) were slower than at able bodied, as well the other authors claimed (15,16,17,18,20) . Results of kinetic analysis shows decreased ground reaction (vertical Fz 1 and Fz 3, fore-aft Fx 1 and Fx 2 and medio-lateral Fy 1 and Fy 2) under prosthetic limb while sound limb has larger magnitude of vertical force Fz 2 (9,21,22,23,24,26). Results of our gait analysis discloses asymmetries in kinematic gait parameters between the amputated and sound legs, as well between transtibial amputees and non-disabled persons, as it is well known (27,6,28,29,30). 5 CONCLUSION Patients with undergone traumatic amputations adapt a unique way of ambulating with prosthesis. Most adaptations can be discerned by means of observation but it is not sufficient enough to note walking complexity. In order to better understand complexity of amputee gait, with discrimination of primary mechanisms of abnormal performance from the compensatory mechanisms, objective gait analyses are able to provide objective assessment about the way prosthetic persons walk. Better understanding of the biomechanics of gait of trauma related amputees might be the basis for intervention strategies that enhance the prospect of maximal functional restoration and provide design guidance for prosthetic components in transtibial amputees (10,2,31). 6 REFERENCES 1. Dillinghan TR, Pezzin LE, MacKenzie EJ,. Incidence, acute care length of stay, and discharge to rehabilitation of traumatic amputee patient: an epidemiologic study. Arch Phys Med Rehabil 1998; 79:279-287. 2. Gard SA. Use of quantative gait analysis for the evaluation of prosthetic walking performance. JPO 2006; 18:93-104. 3. Reitman JS, Postema K, Geertzen JHB. Gait anaysis in prosthetics: opinions, ideas and conclusions. Prosthet Orthot Int 2002; 26:50-57. 4. Saleh M, Murdoch G. In Defence of gait analysis. Observation and measurment in gait assesment. J Bone Joint Surg 1985; 67B: 237-241. 5. Bateni H, Olney S. Kinematic and Kinetic Variations of Bellow - Knee Amputee Gait. J Prosthet Orthot Sci JPO. 2002; 14(1):2-10 6. Isakov E, Burger H, Krajnik DS, Gregori M, Marin ek C. Double -limb support and step-lenghth asymmetry in bellow - knee amputees. Scand J Rehab Med 29: 75- 79,1997. 7. Isakov E, Burger H, Krajnik DS, Gregori M, Marin ek C. Influence of speed on gait parameters and on symetry in bellow - knee amputees. Proceedings of 9th International Conference Mechanics in Medicine and Biology Ljubljana, June 1996; Ljubljana, 1996: 453- 456. 8. Perry J. Clinical examples. U: Gait Analysis U: Normal and Pathological Function. New York: SLACK Incorporated, 1992; 305-311. 9. Isakov E, Karen O, Benjuya N. Trans-tibial amputee gait: time - distance parameters and EMG activity. Prosth Orthot Int 2000; 24:216-220. 10. Winter DA, Sienko SE. Biomechanics of below - knee amputee gait. J Biomech. 1988; 21:361-367. 11. Winter DA. The Biomechanics and Motor Control of Human Gait. Waterloo: University of Waterloo Press, 1987. 12. Gitter A, Czerniecki JM, Decgroot DM. Biomechanical analysis of the influence of prothetic feet on bellow - knee amputee walking. Am J Phys Med Rehabil 1991; 70:142-148. 13. Murray MP. Gait as a total pattern of movement. Am J Phys Med 1967; 46:290-333. 14. Kadaba MP, Ramakrishnan HK, Wooten ME. Measurement of lower limb extremity kinematics during level walking. J Orthop Res 1990; 8:383-392. 15. Winter DA. Kinetics. U: The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. Sec ed. Walerloo Ontario Canada : University of Waterloo Press; 1991: 35- 41. 16. Hermodsson Y, Ekdahl C, Persson BM, Roxendal G. Gait in male trans-tibial amputees: A comparative study with healthy subjects in relation to walking speed. Prosthet Orthot Int 1994; 18:68-77. 17. Waters RL, Perry J, Antonelli D, Hislop H. Energy cost of walking of amputees: The influence of level of amputation. J Bone Joint Surg Am 1976; 58:42-46. 18. Skinner HB, Effeney DJ. Gait analysis in amputees. Am J Phys Med 1985 ;64:82-89. 19. Huang CT, Jackson JR, Moore NB, Fine PR, Kuhlemeier KV,Traugh GH, Saunders PT. Amputation: Energy cost of ambulation. Arch Phys Med Rehabil 1979; 60:18-24 20. Tibarewala DN, Ganguli S. Pattern recognition in tachographic gait records of normal and lower extremity handicapped human subjects. J Biomed Eng 1982; 4:233-240. 21. Seliktar R, Mizrahi J. Some gait characteristics of below-knee amputees and their reflection on the ground reaction forces. Eng Med. 1986; 15:27-34 22. Nissan M. The initiation of gait in lower limb amputees: Some related data. J of Rehab Research. 1991; 28 (2) :1-12 23. Arsenault AB, Valiquette C. Etude de la statique posturale des amputes du membre inferieur: Correlations théoriques et pratiques de la mise en charge. Physiother Can 1981;1:17-33. 24. Summers GD, Morrison JD, Cochrane GM. Foot loading characteristics of amputees and normal subjects. Prosthet Orthot Int 1987;1:33-39. Ž¢¤ŹĢģōč ģ D H ™š©Ŗ«qr‰Š‹Žń:]”•ļńPQ[\]rs,-.ÉļŽļĶļĶļĶļĶļĄļ²ļ²”ļ²ļ²”ļļļ‚ļ²ļ²”ļ²ļ²”ļ‚ļ²ļ²”ļhYGCJOJQJ^JaJ hZC’hZC’CJOJQJ^JaJ hZC’hYGCJOJQJ^JaJhZC’CJOJQJ^JaJhZC’hZC’OJQJ^J hZC’hZC’CJOJQJ^JaJ hZC’hZC’CJOJQJ^JaJ hZC’hZC’CJOJQJ^JaJ.Žš^ č v “ Č z  r Å ! ~ Ö .‡Ž:•𛪫^¶öźźźźźźöööööööööööööööööööö $7$8$H$a$gdZC’ 7$8$H$gdZC’õKLżż¶ d»rsŠ‹˜ńFŸöK¢ļC”cŗjæQöööööööööööööööööööööööööööö 7$8$H$gdZC’QR\]²e»īKtŃ -.Šā h!ŻšNØäöööööööööööööööööööööööööööö 7$8$H$gdZC’ÉŹ½ ¾ æ ·#ø#Ń3HōKõKöKüKżKžK’KLLLL L L L L LLLņįÓĀįÓįĄį³©£©£Ÿ›©£©©£Ÿ›Œ³hn%™hn%™0JmHnHuh€!ÜhZC’ hZC’0JjhZC’0JUhZC’h»] OJQJ^JU hZC’hYGCJOJQJ^JaJhZC’CJOJQJ^JaJ hZC’hZC’CJOJQJ^JaJhm ŪCJOJQJ^JaJä@ œ ¾ æ Ģ !!Ü!4""ė"H#¤#ø#¹#Ę#$s$–$ė$ %b%—%ī%>&ź&B'ź'öööööööööööööööööööööööööööö 7$8$H$gdZC’ź'‚(”(@)Š)9*T*©*Ö*-+c+¹+Å+,4,‰,Ö,ā,6-…-Ä-.d.‚.Š."/F//ä/öööööööööööööööööööööööööööö 7$8$H$gdZC’ä/90ˆ0Ų0111Õ12r22ä293G3š3Ń3VHbHµHņHLI¢IöIJoJØJłJMK¢KõKöööööööööööööööööööööööööööńgdZC’ 7$8$H$gdZC’25. Suzuki K. Force plate study of the artificial limb gait. J Jpn Orthop Assoc 1972; 40:503-516. 26. Jones ME, Bashford GM, Mann JM. Weight bearing and velocity in transtibial and transfemoral amputees. Prosthet Orthot Int 1997; 21:183-186. 27. Brakey J: Gait of unilateral bellow - knee amputees. Orthot Prosthet 1976; 30: 17-24. 28. Culham EG, Peat M, Newell E. Below-knee amputation, a comparison of the effect of the SACH foot and single axis foot on electromyographic patterns during locomotion. Prosthet Orthot Int 1986;10:15-22. 29. Prince F, Allard P, Therrien RG, McFadyen BJ. Running gait impulse asymmetries in below - knee amputees. Prosthet Orthot Int 1992;16:19-24 30. Hurley GRB, McKenney R, Robinson M, Zadravec M, Pierrynowski MR. The role of the contralateral limb in below-knee amputee gait. Prosth Orthot Int 1990;14:33-42. 31. Cortes A, Viosca E, Hoyos JV, Prat J, Sanches- Lacuesta J. Optimatisation of the prescription for trans-tibial (TT) amputees. Prosthet Orthot Int 1997; 21:168-174. PAGE  PAGE 2 õKžK’KL L L LLLóźčóźččćgdZC’„h]„hgdZC’ „ų’„&`#$gd€!Ü,1h°‚. °ĘA!°‰"°‰#‰$‰%°°Ä°Ä ÄœD@ń’D NormalOJQJ^J_HmHsHtHDA@ņ’”D Default Paragraph FontRió’³R  Table Normalö4Ö l4Öaö (kō’Į(No List4 @ņ4 ZC’Footer  Ęøp#.)@¢. ZC’ Page Numberą+P’’’’GxÆō;Zd½rÅ!~Ö.‡Ž:•𛪫^¶ d»rsŠ‹˜ńF Ÿ ö K ¢ ļ C ”    c ŗ  j æ QR\]²e»īKtŃ -.Šā h!ŻšNØä@œ¾æĢ Ü4ėH¤ø¹Ęs–ė b—īu”õAJ č9T©Ö-c¹Å 4 ‰ Ö ā 6!…!Ä!"d"‚"Š""#F##ä#9$ˆ$Ų$1%%Õ%&r&&ä&9'G'š'Ń''(3(†(Ć()s)Ē)ź)@*y*Ź*+s+Ę+Ļ+Š+Ń+Ü+Ż+Ž+į+˜0€€˜0€€x˜0€€x˜0€€x˜0€€x˜0€€x˜0€€x˜0€€˜0€€x˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€x˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€ €˜0€€ €˜0€€˜0€€˜0€€˜0€€ €˜0€€ €˜0€€˜0€€ €˜0€€ €˜0€€˜0€€ €˜0€€ €˜0€€€˜0€€ €˜0€€˜0€€x˜0€€ €˜0€€ €˜0€€ €˜0€€8€˜0€€ €˜0€€ €˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€ €˜0€€˜0€€ €˜0€€ €˜0€€˜0€€˜0€€˜0€€ €˜0€€˜0€€ €˜0€€ €˜0€€€˜0€€ €˜0€€€˜0€€0€˜0€€ €˜0€€ €˜0€€ €˜0€€ €˜0€€ €˜0€€8€˜0€€ €˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€ ˜0€€˜0€€ ˜0€€˜0€€€˜0€€€˜0€€€˜0€€ €˜0€€ ˜0€€€˜0€€ €˜0€€˜0€€ €˜0€€€˜0€€€˜0€€ €˜0€€8€˜0€€ €˜0€€(€˜0€€€˜0€€ €˜0€€8€˜0€€ €˜0€€€˜0€€ €˜0€€ €˜0€€ ˜0€€(˜0€€(˜0€€(˜0€€(˜0€€(˜0€€˜0€€˜0€€˜0€€(˜0€€(˜0€€(˜0€€(˜0€€(˜0€€x˜@0€€˜@0€€˜@0€€˜@0€€˜@0€€˜@0€€ō³¢y*Ź*+s+į+;0Ü”›¢ ;0€ ;0€;0€ ÉL¶Qäź'ä/õKL !"'L !•!’•€LMRUfhop"$;<Žß™›©«qs‰‹  ] _ ” • ļ ń    æ Ą PR[]rs ,.ÉŹŻŽ½æ·¹ĢĶuv”¢” ¢ 'ž'*ž*Å+Ę+Ž+į+FGwx®Æóō:;YZcd¼½qrÄÅ !}~ÕÖ-.†‡ŻŽ9:”•™›©«]^µ¶ cdŗ»qs‰‹—˜šńE F ž Ÿ õ ö J K ” ¢ ī ļ B C “ •    b c ¹ ŗ   i j ¾ æ PR[]±²deŗ»ŒķīJKstŠŃ ,.‰Šįā gh !~ÜŻļšMN§Øćä?@›œ½æĖĢ ~ŪÜ34ŽźėGH£¤·¹ÅĘrs•–źė  ab–—ķītu ”ōõ@AIJŸ ēč89STØ©ÕÖ,-bcø¹ÄÅ  3 4 ˆ ‰ Õ Ö į ā 5!6!„!…!Ć!Ä!""c"d""‚"Ļ"Š"!#"#E#F#œ##ć#ä#8$9$‡$ˆ$×$Ų$0%1%~%%Ō%Õ%&&q&r&Ž&&ć&ä&8'9'F'G'™'š'Š'Ń'&('(2(3(…(†(Ā(Ć())r)s)Ę)Ē)é)ź)?*@*x*y*É*Ź*++r+s+Å+Ę+Ž+į+s‰‹˜R[ ,æĢ¹Ę +Å+Ę+Ž+į+Ę+Ž+į+’’Idaå»] ī{H#f9YG,3lķ vpDw[ZC’n%™OvŃm Ū€!Ü„Eę|ś’@LŃ'ą+@@@@&@(@T@@@’’Unknown’’’’’’’’’’’’Gī‡z €’Times New Roman5€Symbol3&ī ‡z €’Arial?5ī ‡z €’Courier New"ńˆšÄ©%Äfń,Ēʰˆ>%Oˆ>%O隉‰““r4°+°+3ƒšH(š’?ā’’’’’’’’’’’’’’’’’’’’’|ś’’1IdaIdaž’ą…ŸņłOh«‘+'³Ł0LˆœØ“ĄŌ ąģ   ,4<Dā1ssIdada Normal.dotIda6aMicrosoft Word 10.0@ @–@ī\{­”Č@Ž·gĒŽČˆ>%ž’ÕĶ՜.“—+,ł®0č hp|„Œ” œ¤¬“ ¼ ŹāO°+{ 1 Title  !"#$%&'(ž’’’*+,-./0123456789:;<ž’’’>?@ABCDž’’’FGHIJKLž’’’ż’’’Ož’’’ž’’’ž’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’Root Entry’’’’’’’’ ĄF€ŗmĒŽČQ€1Table’’’’’’’’)ļ&WordDocument’’’’’’’’.PSummaryInformation(’’’’=DocumentSummaryInformation8’’’’’’’’’’’’ECompObj’’’’’’’’’’’’j’’’’’’’’’’’’’’’’’’’’’’’’ž’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ž’ ’’’’ ĄFMicrosoft Word Document MSWordDocWord.Document.8ō9²q