Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 408952

Heptagonal triangle as the extreme triangle of Dixmier-Kahane-Nicolas inequality


Kolar-Begović, Zdenka; Kolar-Šuper, Ružica
Heptagonal triangle as the extreme triangle of Dixmier-Kahane-Nicolas inequality // Mathematical Inequalities and Applications 2008
Trogir, Hrvatska, 2008. (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 408952 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Heptagonal triangle as the extreme triangle of Dixmier-Kahane-Nicolas inequality

Autori
Kolar-Begović, Zdenka ; Kolar-Šuper, Ružica

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Mathematical Inequalities and Applications 2008 / - , 2008

Skup
Mathematical Inequalities and Applications 2008

Mjesto i datum
Trogir, Hrvatska, 08.06.2008. - 14.06.2008

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
heptagonal triangle

Sažetak
Let $T$ be a triangle in a Euclidean plane. Let $g(T)$ be the orthic triangle of the triangle $T$, and let $g^2(T)$ be the orthic triangle of the triangle $g(T)$ ; generally let $g^{; ; n+1}; ; (T)$ be the orthic triangle of the triangle $g^{; ; n}; ; (T)$. In \cite{; ; DKN}; ; Dixmier, Kahane and Nicolas have proved, by means of trigonometric series, that for $n \rightarrow \infty$ the triangle $g^n(T)$ tends to the point $L$, a new characteristic point of the triangle $T$. If $(O, R)$ is the circle circumscribed to the triangle $T$, then it has been also shown that $|OL| \leq \frac{; ; 4}; ; {; ; 3}; ; R$ for all triangles $T$ and that $|OL| = \frac{; ; 4}; ; {; ; 3}; ; R$ if and only if the angles of $T$ are $\frac{; ; 4}; ; {; ; 7}; ; \pi$, $\frac{; ; 2}; ; {; ; 7}; ; \pi$, $\frac{; ; 1}; ; {; ; 7}; ; \pi$. This special triangle is called heptagonal triangle. It is very interesting and rare occurrence that heptagonal triangle is the extreme triangle because the extreme triangle in most of different extreme problems about triangles is equilateral triangle. It will be proved geometrically that equality in Dixmier-Kahane-Nicolas inequality $|OL| \leq \frac{; ; 4}; ; {; ; 3}; ; R$ is valid in the case of heptagonal triangle. The relationship between the initial heptagonal triangle $T$ and the obtained point $L$ will also be investigated.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
037-0372785-2759 - Neasocijativne algebarske strukture i njihove primjene (Volenec, Vladimir, MZOS ) ( CroRIS)

Ustanove:
Sveučilište u Osijeku, Odjel za matematiku,
Fakultet za odgojne i obrazovne znanosti, Osijek


Citiraj ovu publikaciju:

Kolar-Begović, Zdenka; Kolar-Šuper, Ružica
Heptagonal triangle as the extreme triangle of Dixmier-Kahane-Nicolas inequality // Mathematical Inequalities and Applications 2008
Trogir, Hrvatska, 2008. (predavanje, međunarodna recenzija, sažetak, znanstveni)
Kolar-Begović, Z. & Kolar-Šuper, R. (2008) Heptagonal triangle as the extreme triangle of Dixmier-Kahane-Nicolas inequality. U: Mathematical Inequalities and Applications 2008.
@article{article, author = {Kolar-Begovi\'{c}, Zdenka and Kolar-\v{S}uper, Ru\v{z}ica}, year = {2008}, keywords = {heptagonal triangle}, title = {Heptagonal triangle as the extreme triangle of Dixmier-Kahane-Nicolas inequality}, keyword = {heptagonal triangle}, publisherplace = {Trogir, Hrvatska} }
@article{article, author = {Kolar-Begovi\'{c}, Zdenka and Kolar-\v{S}uper, Ru\v{z}ica}, year = {2008}, keywords = {heptagonal triangle}, title = {Heptagonal triangle as the extreme triangle of Dixmier-Kahane-Nicolas inequality}, keyword = {heptagonal triangle}, publisherplace = {Trogir, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font