Pregled bibliografske jedinice broj: 408133
Forecasting economic growth using financial variables - Comparison of linear regression and neural network models
Forecasting economic growth using financial variables - Comparison of linear regression and neural network models // Recent advances in Mathematics and Computers in Business and Economics / Mastorakis, Nikos E. ; Croituru, Anca, Balas, Valentina E. ; Son, Eduard ; Mladenov, Valeri (ur.).
Prag: WSEAS Press, 2009. str. 255-260 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 408133 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Forecasting economic growth using financial variables - Comparison of linear regression and neural network models
Autori
Ćurak, Marijana ; Poposki, Klime ; Ćurak, Ivan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Recent advances in Mathematics and Computers in Business and Economics
/ Mastorakis, Nikos E. ; Croituru, Anca, Balas, Valentina E. ; Son, Eduard ; Mladenov, Valeri - Prag : WSEAS Press, 2009, 255-260
ISBN
978-960-474-063-5
Skup
10the WSEAS International Conference on Mathematics and Computers in Business and Economics (MCBE '09)
Mjesto i datum
Prag, Češka Republika, 23.03.2009. - 25.03.2009
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Forecasting; economic growth; financial variables; linear models; neural networks; panel data
Sažetak
According to both the theoretical and empirical literature, financial variables contain useful leading information regarding economic activity and thus can be used in forecasting GDP growth. However, empirical studies of the relationship between the financial development and the economic growth, as well as those of forecasting economic growth using financial variables are mainly based on linear econometric models. Since nonlinearities could exist in the relationship between the variables, in this paper we compare forecasting performance of the linear econometric models and the neural network model for panel data of European Union countries' economic growth. Our results show that at the 1-year forecasting horizon, according to three out of four valuation criteria, neural networks improve forecasting accuracy.
Izvorni jezik
Engleski
Znanstvena područja
Ekonomija
POVEZANOST RADA
Projekti:
055-0000000-0861 - Financijska politika i financijsko-ekonomski okvir podrške SME (Vidučić, Ljiljana, MZOS ) ( CroRIS)
Ustanove:
Ekonomski fakultet, Split
Profili:
Marijana Ćurak
(autor)